Vorhilfe - Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen
URL: http://www.mathe-raum.de/forum/BCH-Formel/t546254


BCH-Formel < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

BCH-Formel: Aufgabe
Status: (Frage) überfällig Status 
Datum: 11:19 Sa 09.05.2009
Autor: Adri_an

Aufgabe
Wir definieren den Exponenten eines Operators durch die Exponentialreihe

[mm]\exp(\hat{A})=\sum\limits_{n=0}^{\infty}\displaystyle\frac{\hat{A}^n}{n!}[/mm]

(a) Zeigen Sie für die Operatoren [mm]\hat{A}[/mm] und [mm]\hat{B}[/mm] die Identität

[mm]\exp(\hat{A})B\exp(-\hat{A})=\hat{B}+[\hat{A},\hat{B}]+\displaystyle\frac{[\hat{A},[\hat{A},\hat{B}]]}{2!}+...[/mm]

, indem Sie die Funktion [mm]f(\lambda)=\exp(\lambda A)B\exp(-\lambda A)[/mm] in eine Taylorreihe in [mm]\lambda[/mm] entwickeln und bei [mm]\lambda=1[/mm] auswerten.

Bemerkung:
Diese Aufgabe wurde mir in der theoretischen Physik gestellt.  

[mm][\hat{A},\hat{B}]:=\hat{A}\hat{B}-\hat{B}\hat{A}[/mm]

heißt Kommutator. Ich weiß nicht, aus welcher Menge [mm]\lambda[/mm] ist, was aber für die Lösung der Aufgabenstellung anscheinend kein Porblem darstellt.

Ja, ich habe mich nicht vertippt, die Operatoren kommen einmal mit [mm]\hat{}[/mm] und ohne vor. Achselzucken.

Lösungsansatz:
Ich bin für die Entwicklung der Funktion von folgender Entwicklungsformel ausgegangen

[mm]f(\lambda)=\sum\limits_{k=0}^j\displaystyle\frac{f^{(k)}(\lambda_0)(\lambda-\lambda_0)^k}{k!}+\color{blue}{R_{j,t_0}(f)}[/mm]

, wobei [mm]\color{blue}{R_{j,t_0}(f)}[/mm] Lagrangesches-Restglied heißt, das ich zunächst noch nicht beachtet habe.

Mir ist aufgefallen, dass es schlecht ist, den Entwicklungspunkt wie in der Aufgabenstellung mit [mm]\lambda[/mm] zu bezeichnen, weil dies nur zu Verwirrungen führt. Deshalb habe ich den Entwicklungspunkt mit [mm]\lambda_0[/mm] wie in obiger Entwicklungsformel bezeichnet.

Folgende Frage/n habe ich bzgl. [mm]f(\lambda)[/mm]:

[mm]f^{(0)}(\lambda)=\exp(\lambda A)B\exp(-\lambda A)=\sum\limits_{n=0}^{\infty}\displaystyle\frac{(\lambda A)^n}{n!}B\sum\limits_{n=0}^{\infty}\displaystyle\frac{(-1)^n(\lambda A)^n}{n!}=(\lambda^0 A^0+\lambda A+\displaystyle\frac{(\lambda A)^2}{2}+\displaystyle\frac{(\lambda A)^3}{6}+...)B(\lambda^0 A^0-\lambda A+\displaystyle\frac{(\lambda A)^2}{2}-\displaystyle\frac{(\lambda A)^3}{6}+...)[/mm]

1. Frage: Was ist [mm]A^0[/mm]? Gibt es da eine Definition? Habe in Bücher der Funktionalanalysis geschaut, aber nichts gefunden.

Nun zur 1. Ableitung....

[mm]f^{(1)}(\lambda)=(A+2(\lambda A)A\frac{1}{2}+3(\lambda A)^2)A\frac{1}{6}+...)B\exp(-\lambda A) + \exp(\lambda A)B(-A+2(\lambda A)A\frac{1}{2}-3(\lambda A)^3\frac{1}{6}+...)[/mm]

[mm]=(A+(\lambda A)A+\frac{(\lambda A)^2A}{2}+...)B\exp(-\lambda A)+\exp(\lambda A)B(-A+(\lambda A)A-\frac{(\lambda A)^2A}{2}+...)[/mm]

2. Frage: Was soll ich jetzt tun? Ich vermute Ausklammern, aber darf ich das?

Gruß,
Adrian.

        
Bezug
BCH-Formel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 10.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


© Copyright 2003-25 www.vorhilfe.de
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.