www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Banach'sche Fixpunktsatz
Banach'sche Fixpunktsatz < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach'sche Fixpunktsatz: prob. mit Iterationsverfahren
Status: (Frage) beantwortet Status 
Datum: 11:09 Mi 21.11.2012
Autor: Studiiiii

Aufgabe
[mm]f(x)=\frac{1}{2}(x+\frac{3}{x})[/mm]
Zeigen Sie unter Verwendung des Banachschen Fixpunktsatzes, da die zugehorige Fixpunktiteration [mm]x_{n+1} = f(x_n) fur  n = 0; 1;...für~ alle~  x\in (0;\inf) ~ gegen~ \wurzel{3}[/mm] konvergiert.


Hallo
ich habe ein großes problem mit dem lösen dieser aufgabe.
Ich habe das iterationsverfahren des banachschen fixpunktsatzes angewendet bis ich schon sehr nah an der [mm] \wurzel(3) [/mm] war.

jedoch ist das nun ja kein beweis.
dann hab ich mir die skizze zur funktion passend angeschaut.

wir hatten beispiele in der vorlesung, bei denen gewisse intervalle betrachtet wurden, aber ich versteh nicht wie man genau auf die intervalle kommt.
wählt man die abhängig vom fixpunkt? sozusagen eine umgebung davon??

und was mache ich wenn ich die intervalle gefunden habe?

ein wenig tipps wären hilfreich
ps.: iwie hat der formelsatz gerade nicht funktioniert wie er sollte

        
Bezug
Banach'sche Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 21.11.2012
Autor: fred97

Zeige:

   f([1,3]) [mm] \subseteq [/mm] [1,3]

und f ist auf [1,3]  eine Kontraktion.

FRED

Bezug
                
Bezug
Banach'sche Fixpunktsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:41 Do 22.11.2012
Autor: davux

Hallo,

müsste man die untere Grenze des abgeschlossenen Intervalls, welches D bildet, nicht entsprechend des in der Aufgabenstellung gegebenen Intervalls [mm] $(0,\infty)$ [/mm] setzen? Das heißt, wenn ich $[1,3]$ ansetze, dann habe ich zwar ein abgeschlossenes Intervall und damit eine notwendige Voraussetzung für die Anwendung des Banachschen Fixpunktsatzes, aber ich könnte mir ja dennoch ein [mm] $x_0\in(0,\infty)$ [/mm] wählen, was dann garnicht im Definitionsbereich der vermeintlichen Kontraktion $f$ liegt. Das scheint mir ein Problem zu sein. D sollte schon so gesetzt sein, dass es jeden Anfangswert für die Kontraktion zulässt. Dazu dachte ich mir, ich nehme als Intervallgrenzen für ein [mm] $\epsilon>0$, [/mm] so dass [mm] $x_0-\epsilon>0$, [/mm] das Intervall [mm] $D=[x_0-\epsilon,f(x_0-\epsilon)]$, [/mm] aber ich bin nicht sicher, ob es zulässig ist, die Grenzen derart abhängig vom Startwert zu machen.

Gruß


#Edit: Ich sehe gerade, derjenige welche hat die Aufgabenstellung etwas unvollständig abgetippt. Es müsste meiner Schätzung nach ein fünfzeiliger Absatz sein. Auf jeden Fall ist dies die erste Hürde, die zu bewältigen ist. Es wird allerdings scheinbar nicht deutlich genug, dass es darum geht, D so zu setzen, damit es für jeden Startwert [mm] $x_0\in(0,\infty)$ [/mm] eine Kontraktion ist, weil die Null vergessen wurde.
Edit#3: Letzte Bearbeitung.

Bezug
                        
Bezug
Banach'sche Fixpunktsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Sa 24.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de