www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliche Integrale
uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 So 23.04.2006
Autor: Janyary

Aufgabe
Zeigen Sie, dass fuer die Konvergenz des uneigentlichen Integrals  [mm] \integral_{a}^{\infty}{f(x) dx} [/mm] die Existenz von  [mm] \limes_{x\rightarrow\infty} [/mm] f(x) nicht notwendig ist. Betrachten Sie zu diesem Zweck das Beispiel  [mm] \integral_{1}^{\infty}{sin(x^{2}) dx} [/mm] und schreiben Sie den Integranden in der Form [mm] \bruch{1}{2x}*2x*sin(x^{2}) [/mm]

huhu, da bin ich nochmal :)

mit der aufgabe hab ich so einige verstaendnisprobleme.. zuerst einmal. ich verstehe nicht, wo der zusammenhand ist, zwischen dem [mm] \limes_{x\rightarrow\infty} [/mm] f(x) und der konvergenz des unbestimmten integrals.

davon aber mal abgesehen, hab ich erstmal angefangen und mich an das bsp. gehalten und partiell integriert.
[mm] \integral_{1}^{\infty}{\bruch{1}{2x}*2x*sin(x^{2}) dx}=-\bruch{1}{2x}*cos(x^{2})- \integral_{1}^{\infty}{\bruch{cos(x^{2})}{2x^{2}} dx} [/mm]
wenn ich nun [mm] \integral_{1}^{\infty}{\bruch{cos(x^{2})}{2x^{2}} dx} [/mm] abschaetze komme ich darauf, dass gilt [mm] \bruch{cos(x^{2})}{2x^{2}}<\bruch{1}{2x^{2}} [/mm]
mit dem reihenkriterium ergibt sich, dass [mm] \bruch{1}{2x^{2}} [/mm] konvergent ist. damit ist es eine konvergente majorante zu [mm] \bruch{cos(x^{2})}{2x^{2}}. [/mm]
demzufolge existiert auch [mm] \integral_{1}^{\infty}{\bruch{cos(x^{2})}{2x^{2}} dx} [/mm]

an der stelle komme ich nun jedoch nicht so richtig weiter.

[mm] \integral_{1}^{\infty}{\bruch{1}{2x}*2x*sin(x^{2}) dx}=\underbrace{-\bruch{1}{2x}*cos(x^{2})}_{1.}- \underbrace{\integral_{1}^{\infty}{\bruch{cos(x^{2})}{2x^{2}} dx}}_{2.} [/mm]

1. in meinen grenzen ergibt ca. 0.28, aber zumindest einen konkreten wert.
2. ist konvergent

d.h. [mm] \integral_{1}^{\infty}{sin(x^{2}) dx} [/mm] ist ebenfalls konvergent.

falls das stimmt, hab ich ja nun die konvergenz meines bsp.integrals gezeigt, oder? aber die frage an sich noch nicht beantwortet.

haette vielleicht jemand einen tipp fuer mich, wie ich nun weiter vorgehen muss?

LG Jany :)


        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 23.04.2006
Autor: Walde

Hi jany,

was du aus der Aufgabe mitnehmen sollst ist das:

damit ein uneigentliches Integral existiert (d.h. konvergiert) ist es nicht notwendig, dass der Integrand einen Grenzwert hat.
Denn [mm] sin(x^2) [/mm] schwankt ja immer zw. -1 und 1 hin und her, d.h.
[mm] \limes_{x\rightarrow\infty}sin(x^2) [/mm] existiert nicht, trotzdem exisiert das uneigentl Integral. Man kann also NICHT folgern: Der Integrand hat keinen Grenzwert, also das Integral auch nicht.

Deine Rechnung sieht im übrigen richtig aus.

l G walde

Bezug
                
Bezug
uneigentliche Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 23.04.2006
Autor: Janyary

aha, das macht das ganze endlich mal verstaendlich fuer mich.
vielen dank und schoenen abend noch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de