www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abbildungen und Matrizen
Abbildungen und Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen und Matrizen: Suche Zusammenfassung
Status: (Umfrage) Beendete Umfrage Status 
Datum: 16:40 Mi 22.08.2007
Autor: totmacher

Hallo,

in 1 Woche schreiben wir unsere Mathe-LK Klausur. Leider haben wir kein Mathe mehr vor der klausur und müssen deshalb 20 Seiten im Buch lesen und uns alles selbst beibringen. Nur blicke ich da nicht ganz durch. Kennt jemand ein Buch oder eine Internetseite wo alles zu diesem thema von Anfang an erklärt wird?

Themen auf diesen Seiten: Geometrische Abbildungen und Abbildungsgleichungen, Affine Abbildungen, Darstellung affiner Abbildungen mithilfe von Matritzen,, Verkettung von affinen Abbildungen

Analytiker hat diese Frage in eine Umfrage umgewandelt!

        
Bezug
Abbildungen und Matrizen: Links, Links und Links...
Status: (Antwort) fertig Status 
Datum: 16:59 Mi 22.08.2007
Autor: Analytiker

Hi totmacher,

> in 1 Woche schreiben wir unsere Mathe-LK Klausur. Leider
> haben wir kein Mathe mehr vor der klausur und müssen
> deshalb 20 Seiten im Buch lesen und uns alles selbst
> beibringen. Nur blicke ich da nicht ganz durch. Kennt
> jemand ein Buch oder eine Internetseite wo alles zu diesem
> thema von Anfang an erklärt wird?

> Themen auf diesen Seiten: Geometrische Abbildungen und
> Abbildungsgleichungen, Affine Abbildungen, Darstellung
> affiner Abbildungen mithilfe von Matritzen,, Verkettung von
> affinen Abbildungen

Schau dir mal das an:

[]Affine Abbildung I
[]Affine Geometrie
[]Affine Abbildung II
[]Affine Abbildung III
[]Aufgabe Affine Abbildung mit Lösung
[]Power Point Präsentation über Abbildungen und Matrizen eines Mathe LKs
[]Lieteratur zum Thema "Affine Abbildunge" (mal in der Bibliothek ansehen)

Du kannst dir ja mal ein bissl Zeit nehmen, und dir die Links ansehen. Nicht alles wird (vielleicht) etwas für dich sein, aber das ein oder andere sicher... da ich nicht weiß was für (Vor-)Kenntnisse du hast. Viel Spass beim Sichten des Material... ;-)!

Liebe Grüße
Analytiker
[lehrer]

Bezug
                
Bezug
Abbildungen und Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 So 26.08.2007
Autor: totmacher

Aufgabe
Gegeben ist eine geometrische Abbildung mit den Gleichungen
x1´= x1 + rx2
x2’= x2
(r ungleich 0! )

a) Begründen Sie, dass es sich um eine Scherung mit der x1-Achse als Achse a handelt. Zeigen Sie dazu:
- die x1-Achse ist eine Fixpunktgerade,
- für jeden Punkt P( p1/p2 )mit p2 ungleich 0 ist die Größe des Winkels P´AP mit A ( p1/0 ) unabhängig von den Koordinaten von P.

Wie kann die x1 Achse eine Fixpunktgerade sein, es muss doch immer x1'=x1 und x2'=x2 sein, das ist hier doch gar nicht möglich da r nicht 0 werden darf.

Bezug
                        
Bezug
Abbildungen und Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 26.08.2007
Autor: angela.h.b.


> Gegeben ist eine geometrische Abbildung mit den Gleichungen
> x1´= x1 + rx2
> x2’= x2
> (r ungleich 0! )
>
> a) Begründen Sie, dass es sich um eine Scherung mit der
> x1-Achse als Achse a handelt. Zeigen Sie dazu:
> - die x1-Achse ist eine Fixpunktgerade,
> - für jeden Punkt P( p1/p2 )mit p2 ungleich 0 ist die Größe
> des Winkels P´AP mit A ( p1/0 ) unabhängig von den
> Koordinaten von P.
>  
> Wie kann die x1 Achse eine Fixpunktgerade sein, es muss
> doch immer x1'=x1 und x2'=x2 sein, das ist hier doch gar
> nicht möglich da r nicht 0 werden darf.

Hallo,

wie lauten denn die Koordinaten eines Punktes, welcher auf der [mm] x_1-Achse [/mm] liegt?
Sie lauten (a, 0) mit [mm] a\in \IR. [/mm]

Nun schau, was Du erhältst, wenn Du die Abbildung auf solch einen Punkt anwendest.

Gruß v. Angela

Bezug
                                
Bezug
Abbildungen und Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 So 26.08.2007
Autor: totmacher

Klar, wenn die x1-Achse Scherungsachse sein soll, muss die x2 Koordinate ja 0 sein und dann erhält man ja x1'=x1.

Aber das mit den Winkeln verstehe ich net, Geometrie liegt mir gar nicht^^

Bezug
                                        
Bezug
Abbildungen und Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 So 26.08.2007
Autor: angela.h.b.

Aufgabe:

Gegeben ist eine geometrische Abbildung mit den Gleichungen
x1´= x1 + rx2
x2’= x2
(r ungleich 0! )

a) [...]
- für jeden Punkt P( p1/p2 )mit p2 ungleich 0 ist die Größe des Winkels P´AP mit A ( p1/0 ) unabhängig von den Koordinaten von P.


Zeichne Dir die [mm] x_1-Achse [/mm] auf. A ist ein Punkt auf dieser.

P ist ein beliebiger Punkt irgendwo, und P' ist sein Bild, wenn obige Abbildung angewendet wurde.

Zeigen sollst Du nun, daß der Winkel zwischen der geraden durch A und P und der durch A und P' immer gleich ist, unabhängig davon, welchen Punkt Du wählst.

Zur Durchführung: P ist beliebig, also P=(x,y).

Berechne P' und anschließend den Winkel zwischen [mm] \overrightarrow{AP} [/mm] und [mm] \overrightarrow{AP'}. [/mm] Hierfür ist sicher das Skalarprodukt nützlich.

Gruß v. Angela



Bezug
                                                
Bezug
Abbildungen und Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 So 26.08.2007
Autor: totmacher

Danke für die Hilfe. Habe es jetzt verstanden. Ich glaube die Aufgabe war einfacher, als ich dachte.
Hier wird davon ausgegangen, dass es sich um ein rechtswinkliges "Dreieck" handelt. Also kann man es mit dem tan(alpha)=p1+r*p2-p1/p2 =r   Dann sieht man dass sich die Ps wegkürzen und somit das P unabhängig ist

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de