www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Basis die 2te
Basis die 2te < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis die 2te: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 So 01.03.2009
Autor: meep

Aufgabe
Es seien a1, . . . , a6 die 6 verschiedenen Vektoren im [mm] R^4 [/mm] mit jeweils genau zwei Einsen und zwei Nullen. Beweisen oder widerlegen Sie die folgenden Aussagen:

(i) Jede Auswahl von vier verschiedenen Vektoren aus {a1, . . . , a6} bildet eine Basis des [mm] R^4. [/mm]

(ii) Keine Auswahl von vier verschiedenen Vektoren aus {a1, . . . , a6} bildet eine Basis des [mm] R^4. [/mm]

hi zusammen,

bei der aufgabe bin ich wie folgt vorgegangen, ich hab erstmal eine matrix aus den 6 vektoren gebildet die dann wie folgt lautet

A = [mm] \pmat{ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 1 & 0 & 1 } [/mm]

nach ewigem umformen kam ich dann auf

A = [mm] \pmat{ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 } [/mm]

und die sind dann linear unabhängig weil det(A) [mm] \not= [/mm] 0 ist,

das heißt dann ja, dass jede kombination aus 4 vektoren eine Basis des [mm] R^4 [/mm] bilden, oder ist das ein trugschluss von mir ?

vielen dank schonmal im voraus

meep

        
Bezug
Basis die 2te: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 01.03.2009
Autor: MathePower

Hallo meep,

> Es seien a1, . . . , a6 die 6 verschiedenen Vektoren im [mm]R^4[/mm]
> mit jeweils genau zwei Einsen und zwei Nullen. Beweisen
> oder widerlegen Sie die folgenden Aussagen:
>  
> (i) Jede Auswahl von vier verschiedenen Vektoren aus {a1, .
> . . , a6} bildet eine Basis des [mm]R^4.[/mm]
>  
> (ii) Keine Auswahl von vier verschiedenen Vektoren aus {a1,
> . . . , a6} bildet eine Basis des [mm]R^4.[/mm]
>  hi zusammen,
>  
> bei der aufgabe bin ich wie folgt vorgegangen, ich hab
> erstmal eine matrix aus den 6 vektoren gebildet die dann
> wie folgt lautet
>  
> A = [mm]\pmat{ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\\ 0 & 1 & 0 & 1 }[/mm]


Forme statt dessen [mm]A^{t}[/mm] ( die Transponierte Deiner Matrix A ) so um,
wie Du es mit A auch gemacht hast.


>  
> nach ewigem umformen kam ich dann auf

>

> A = [mm]\pmat{ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 }[/mm]


>  
> und die sind dann linear unabhängig weil det(A) [mm]\not=[/mm] 0
> ist,
>  
> das heißt dann ja, dass jede kombination aus 4 vektoren
> eine Basis des [mm]R^4[/mm] bilden, oder ist das ein trugschluss von
> mir ?


Das ist ein Trugschluss:


[mm]\pmat{1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1}[/mm] ist keine Basis des [mm]\IR^{4}[/mm]


>  
> vielen dank schonmal im voraus
>  
> meep


Gruß
MathePower

Bezug
                
Bezug
Basis die 2te: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 01.03.2009
Autor: meep

jepp stimmt die determinante ist null, hab mich sogar noch verrechnet, aber die beweisidee war doch die richtige richtung oder ?

Bezug
                        
Bezug
Basis die 2te: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 01.03.2009
Autor: MathePower

Hallo meep,

> jepp stimmt die determinante ist null, hab mich sogar noch
> verrechnet, aber die beweisidee war doch die richtige
> richtung oder ?


Ja.

Die Idee, ist ja immer die Bedingung der linearen Unabhängigkeit nachzuprüfen.

Hier also

[mm]\alpha*a_{1}+\beta*a_{2}+\gamma*a_{3}+\delta*a{4}+\epsilon*a_{5}+\mu*a_{6}=0[/mm]


Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de