www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bestimmung des Grenzwertes
Bestimmung des Grenzwertes < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung des Grenzwertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mo 10.12.2007
Autor: xbruceleex

Aufgabe
Gegeben ist die Folge [mm] a(n)=\bruch{1}{5n-3236} [/mm]  Die Aufgabe lautet

Ist die Folge a(n) beschränkt und welcher Zusammenhang besteht hier zum Grenzwert der Folge? Beweis!!!

Also ich hab irgendwie keine Ahnung wie man hier den Grenzwert bestimmt. Ich glaub das war etwas mit dem limes zu tun wo man [mm] \limes_{n\rightarrow\infty} [/mm] unter a(n) hinschreibt. Hatte es irgendetwas mit den oberen und unteren schranken zu tun? Ich habe in der schule mich kaum mit grenzwert und so beschäftigt, darum habe ich keine ahnung wie man dies jetzt macht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


edit:

Ich habe in der Stunde, wo wir die aufgaben bekommen haben, einen graph gezeichnet. da konnte man erkennen, wo die obere und die untere schranke ist.

Zu dem Grenzwert habe ich jetzt folgendes geschrieben

[mm] \limes_{n\rightarrow 647}\bruch{1}{5n-3236}=-1 [/mm] gilt für alle [mm] n\in\IN [/mm]

[mm] \limes_{n\rightarrow\infty}\bruch{1}{5n-3236}=0 [/mm] gilt für alle [mm] n\in\IN [/mm]
n>647

        
Bezug
Bestimmung des Grenzwertes: Schranken
Status: (Antwort) fertig Status 
Datum: 20:32 Do 13.12.2007
Autor: Loddar

Hallo xbruceleex,

[willkommenmr] !!


> Zu dem Grenzwert habe ich jetzt folgendes geschrieben
>  
> [mm]\limes_{n\rightarrow 647}\bruch{1}{5n-3236}=-1[/mm] gilt für alle [mm]n\in\IN[/mm]

[ok] Das ist also die untere Schranke! Und was ist mit der oberen Schranke? Betrachte hierzu mal $n \ = \ 648$ .

  

> [mm]\limes_{n\rightarrow\infty}\bruch{1}{5n-3236}=0[/mm] gilt für alle [mm]n\in\IN[/mm]
>  n>647

[ok]

Besteht hier also ein Zusammenhang zwischen Schranken und Grenzwert?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de