www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Betragsfunktion differenzieren
Betragsfunktion differenzieren < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsfunktion differenzieren: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 14:59 So 25.04.2010
Autor: svcds

Aufgabe
Für welche a [mm] \in \IR [/mm] ist die Funktion f(x) = x + x * |x| differenzierbar?  

Hi, ich hab Probleme den richtigen Ansatz zu finden.

Also ich muss ja ne Fallunterscheidung machen, also einmal f(x) = x + x² und einmal f(x) = x - x² oder?

Dann muss ich für beide gucken, wo die Nullstellen sind und dann links und rechtseitigen Limes sowie die Funktionswerte ermitteln, oder?

Hab sowas noch nie gemacht, darum frag ich.

GLG KNUT

        
Bezug
Betragsfunktion differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 25.04.2010
Autor: schachuzipus

Hallo Knut,



> Für welche a [mm]\in \IR[/mm] ist die Funktion f(x) = x + x * |x|
> differenzierbar?
> Hi, ich hab Probleme den richtigen Ansatz zu finden.
>  
> Also ich muss ja ne Fallunterscheidung machen, also einmal
> f(x) = x + x² und einmal f(x) = x - x² oder? [ok]

für [mm] $x\ge [/mm] 0$ bzw. $x<0$

>  
> Dann muss ich für beide gucken, wo die Nullstellen sind
> und dann links und rechtseitigen Limes sowie die
> Funktionswerte ermitteln, oder?

Ja, aber nur an der "Nahstelle" [mm] $x_0=0$ [/mm]

Außerhalb von 0 sind die beiden Teilfunktionen [mm] $g(x)=x+x^2$ [/mm] und [mm] $h(x)=x-x^2$ [/mm] ja offensichtich differenzierbar.

Schaue dir also den links- und rechtsseitigen Limes des Differenzenquotienten (für [mm] $x\uparrow \downarrow [/mm] 0$) an

>  
> Hab sowas noch nie gemacht, darum frag ich.
>  
> GLG KNUT

Gruß

schachuzipus

Bezug
                
Bezug
Betragsfunktion differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 So 25.04.2010
Autor: svcds

also ich habe jetzt rausbekommen, dass

r-lim = l-lim = 1 ist

und dann die Ableitung bestimmen und die 0 als Nahtstelle einsetzen und gucken was rauskommt? Oder heißt das jetzt bezogen auf die Anfangsfrage, dass die Funktion überall differenzierbar ist?

Bezug
                        
Bezug
Betragsfunktion differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 So 25.04.2010
Autor: svcds

ich denke, dass das so okay ist oder muss ich da jetzt sagen überall differenzierbar außer an der Stelle x=0?

Bezug
                                
Bezug
Betragsfunktion differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 So 25.04.2010
Autor: Al-Chwarizmi

Die Funktion ist überall differenzierbar, auch an der
Nahtstelle x=0, und es ist  f'(0)=1 .

LG

Bezug
                                        
Bezug
Betragsfunktion differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 So 25.04.2010
Autor: svcds

danke sehr für die Formulierungshilfe :)

Bezug
                                
Bezug
Betragsfunktion differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Mo 26.04.2010
Autor: fred97

Zur Differenzierbarkeit im Punkt  0: eine Fallunterscheidung (x>0, x<0) ist nicht nötig:

[mm] $\bruch{f(x)-f(0)}{x-0}= \bruch{x+x|x|}{x}= [/mm] 1+|x| [mm] \to [/mm] 1$ für $x [mm] \to [/mm] 0$

FRED

Bezug
                        
Bezug
Betragsfunktion differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 So 25.04.2010
Autor: schachuzipus

Hallo nochmal,

> also ich habe jetzt rausbekommen, dass
>  
> r-lim = l-lim = 1 ist
>  
> und dann die Ableitung bestimmen und die 0 als Nahtstelle
> einsetzen und gucken was rauskommt? Oder heißt das jetzt
> bezogen auf die Anfangsfrage, dass die Funktion überall
> differenzierbar ist?

Das ist ja nun beantwortet ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de