www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beweis ggt / kgv
Beweis ggt / kgv < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis ggt / kgv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:29 Sa 16.10.2010
Autor: kiwibox

Hallo...

neues Semester und nun fangen schon wieder die Fragen an...;-)

Ich habe eine Aufgabe, in der ich folgendes zeigen soll:
ggT(z,kgV(b,d))=ggT(z,ggT(b,d)). Dabei steht in der Aufgabenstellung noch, dass [mm] \bruch{a}{b} [/mm] und [mm] \bruch{c}{d} [/mm] gekürzt sind und [mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d}=\bruch{z}{kgV(b,d)} [/mm]

Meine bisherigen Überlegungen dazu sind ziemlich ernüchtern...klar, ist was hinter dieser Aufgabe steckt. Zeigen kann ich dies allerdings nur nicht.

Ich bin erst von dem Bruch ausgegangen: [mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d}=\bruch{ad+cb}{bd}=\bruch{la+kc}{kgV(b,d)}=\bruch{z}{kgV(b,d)} [/mm]
Dadurch ist mir zwar der Zusammenhang zwischen ggT und kgV aufgefallen, leider hat es mich auch nicht dem gewünschten Ziel gebracht: [mm] \bruch{bd}{ggT(b,d)} [/mm] =kgV(b,d)

Die obrige Gleichung, die ich beweisen soll hab ich dann auch mal umgestellt: ggT(z,kgV(b,d))=ggT(z,ggT(b,d))
m=ggT(z,ggT(b,d)) [mm] \gdw [/mm] m|z, m|ggT(b,d) [mm] \Rightarrow [/mm] m|z, m|b, m|d [mm] \Rightarrow [/mm] ggT(z,b,d) aber wie komme ich nun auf ggt(z,kgV(b,d))???

Hat jemand Tipps, Ideen,..? Irgendwas für mich? Ich wäre euch total dankbar....

Grüße, eure kiwibox

        
Bezug
Beweis ggt / kgv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Sa 16.10.2010
Autor: reverend

Hallo kiwibox,

> Ich habe eine Aufgabe, in der ich folgendes zeigen soll:
>  ggT(z,kgV(b,d))=ggT(z,ggT(b,d)). Dabei steht in der
> Aufgabenstellung noch, dass [mm]\bruch{a}{b}[/mm] und [mm]\bruch{c}{d}[/mm]
> gekürzt sind und [mm]\bruch{a}{b}[/mm] +
> [mm]\bruch{c}{d}=\bruch{z}{kgV(b,d)}[/mm]

Was sind denn a und c? Die müssen doch besondere Bedingungen erfüllen, denn die Behauptung ist ja nicht allgemeingültig. edit: siehe unten.

Nimm z=45, b=15, d=35. Dann ist $ kgV(b,d)=105 $ und $ ggT(b,d)=5 $.
Weiter ist $ ggT(z,kgV(b,d))=ggT(45,105)=15 [mm] \not= [/mm] 5=ggT(45,5)=ggT(z,ggT(b,d)) $.

Unwahre Behauptungen sind meist schwer zu zeigen. ;-)

Du hast m.E. den Hinweis nicht beachtet, dass die Brüche gekürzt sind.

Es sei [mm] \blue{k:=ggT(b,d)} [/mm] und [mm] \blue{b=k\beta,\ d=k\delta}. [/mm] Dann ist [mm] \blue{kgV(b,d)=k\beta\delta}, [/mm]

Weiter ist [mm] \blue{ggT(a,b)=ggT(c,d)=ggT(\beta,\delta)=1}. [/mm] Unbekannt aber sind ggT(a,d) und ggT(c,b).

Dann ist [mm] \blue{\bruch{a}{b}+\bruch{c}{d}=\bruch{a}{k\beta}+\bruch{c}{k\delta}=\bruch{ak\delta+ck\beta}{k^2\beta\delta}=\bruch{a\delta+c\beta}{k\beta\delta}=\bruch{a\delta+c\beta}{kgV(b,d)}} [/mm]

Von hier ist es nicht mehr weit. Kommst Du allein weiter?


Grüße
reverend

PS: ach, übrigens...

> Die obrige Gleichung, die ich beweisen soll

Das Wort "obrig" gibt es m.W. in keinem deutschen Sprachgebiet mehr. Es gilt als seit dem 18.Jh. ausgestorben und existiert nur noch in der Zusammensetzung "Obrigkeit". Ansonsten gilt "obig" als richtig. Aber vielleicht bin ich da auch nur nicht gut über Regionalsprachen informiert?


Bezug
                
Bezug
Beweis ggt / kgv: ach soooo
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:51 Sa 16.10.2010
Autor: reverend

Sorry, ich glaube, ich verstehe es jetzt erst. Der Hinweis in der Aufgabe ist gerade die Definition von a und b.
Hmmm. Moment mal.

Ich revidiere meine Antwort wohl gleich...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de