www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Beweis mit Landausymbol
Beweis mit Landausymbol < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Landausymbol: Idee
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 08.05.2012
Autor: mikexx

Aufgabe
f sei eine beschränkte und stetige Funktion (z.B. eine Dichtefunktion) und B sei ein Intervall.

Kann man dann sagen:

[mm] $\frac{1}{nh}\left(\frac{1}{h}\int_{B}f(u)\, du(1-\int_{B}f(u)\, du)\right)$ [/mm]

[mm] $=\frac{1}{nh}(f(x)+o(1))$ [/mm] mit [mm] $x\in [/mm] B, h>0, [mm] n\geq [/mm] 1$?


Dabei bezeichne h die Breite des Intervalls.

Meine Antwort lautet: Ja.

Denn es gilt (Mittelwertsatz für stetige und beschränkte Funktionen):

[mm] $\int_{B}f(u)\, du=h\cdot [/mm] f(x), [mm] x\in [/mm] B$

Dann folgt doch oben:

[mm] $=\frac{1}{nh}\left(\frac{1}{h}hf(x)-f(x)hf(x)\right)=\frac{1}{nh}(f(x)-o(1)), h\to [/mm] 0$, denn [mm] $f(x)^2\cdot h\to [/mm] 0$ für [mm] $h\to [/mm] 0$, also $f(x)^2h=o(1)$.



Ich hoffe, das ist okay. :-)


LG

        
Bezug
Beweis mit Landausymbol: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 08.05.2012
Autor: fred97


> f sei eine beschränkte und stetige Funktion (z.B. eine
> Dichtefunktion) und B sei ein Intervall.
>  
> Kann man dann sagen:
>  
> [mm]\frac{1}{nh}\left(\frac{1}{h}\int_{B}f(u)\, du(1-\int_{B}f(u)\, du)\right)[/mm]
>  
> [mm]=\frac{1}{nh}(f(x)+o(1))[/mm] mit [mm]x\in B, h>0, n\geq 1[/mm]?
>  
>
> Dabei bezeichne h die Breite des Intervalls.

Das ist komisch ....1

1. das n ist völlig überflüssig, tut nichts zur Sache. Warum stehts dann in der Gleichung ?

2. was hat es mit dem x [mm] \in [/mm] B auf sich ? Soll obige Gleichung für alle x [mm] \in [/mm] B gelten oder nur für eins oder .....


>  Meine Antwort lautet: Ja.
>  
> Denn es gilt (Mittelwertsatz für stetige und beschränkte
> Funktionen):
>  
> [mm]\int_{B}f(u)\, du=h\cdot f(x), x\in B[/mm]


Immer sachte !  Dieses x , welches Du aus dem MWS bekommst, wird wohl kaum das x aus der Aufgabenstellung sein !


Wo hast Du das ganze her ?

FRED


>  
> Dann folgt doch oben:
>  
> [mm]=\frac{1}{nh}\left(\frac{1}{h}hf(x)-f(x)hf(x)\right)=\frac{1}{nh}(f(x)-o(1)), h\to 0[/mm],
> denn [mm]f(x)^2\cdot h\to 0[/mm] für [mm]h\to 0[/mm], also [mm]f(x)^2h=o(1)[/mm].
>  
>
>
> Ich hoffe, das ist okay. :-)
>  
>
> LG


Bezug
                
Bezug
Beweis mit Landausymbol: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:00 Di 08.05.2012
Autor: mikexx

Ich sehe gerade, ich bin nicht der Einzige, der damit Probleme hat! Und dort scheint eine ähnliche Idee aufgekommen zu sein.

Darf ich einen Link geben, damit ich nicht alles aufschreiben muss?


Es geht auch bei mir um []diesen Beweis.

Ich frage mich genauso, wie das o(1) ins Spiel kommt.





Bezug
                        
Bezug
Beweis mit Landausymbol: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 10.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de