www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Beweisverfahren Folge
Beweisverfahren Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisverfahren Folge: Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:45 Mi 25.02.2009
Autor: mondesflimmer

Aufgabe
a) Beweise folgende Sätze:
(1) Für eine geometrische Folge [mm] [/mm] gilt: [mm] a_{n}^{}2=a_{n-1}*a_{n+1} [/mm]
(2)Ist [mm] [/mm] eine geometrische Folge, so ist auch [mm] <\bruch{c}{a_{n}}> [/mm] eine geometrische Folge [mm] (c\not=0) [/mm]
(3) Sind [mm] [/mm] und [mm] [/mm] geometrische Folgen, so gilt:
1) [mm] [/mm] ist eine geometriesche Folge 2) [mm] <\bruch {a_{n}}{b_{n}}> [/mm] ist eine geometrische Folge.

Hallo,

allgemein bzw. wurden Beweisverfahren vom Lehrplan gestrichen (erzählte unsere Mathelehrerin), doch leider oder glücklicherweise (wie man es sehen will) nicht von unseren. So, nun schreiben wir morgen einen Test und meine Versuche da durchzusteigen sind leider fruchtlos geblieben.

Bitte helft mir, diese "Teile" zu verstehen.

Also, ich weiß, dass [mm] a_{n} [/mm] = [mm] a_{1}*q^{n-1} [/mm] ist.
hilft mir das weiter?

Mondesflimmer


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisverfahren Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mi 25.02.2009
Autor: leduart

Hallo mondesflimmer

              [willkommenmr]

eine geometrische Folge ist doch eine Folge mit [mm] a_n=a*q^n [/mm]
dann ist [mm] a_{n-1}=a*q^{n-1} [/mm] entsprechend. [mm] a_{n+1} [/mm]
So jetzt schreib mal die rechte Seite von 1. hin. fasse zusammen. Was kommt raus? vergleiche mit [mm] a_n^2 [/mm]

2. genauso: bilde einfach [mm] c/a_n [/mm]  nenne 1/q = r
3. bilde [mm] a_n [/mm] mit [mm] q_1 b_n [/mm] mit [mm] q_2 [/mm] und sieh dir das Ergebnis an!
denk immer dran q kann irgendeine Zahl sein, a auch.
Dann sind das kaum Beweise sondern immer nur eine Zeile Rechnung und ein Satz.
Schreib deine ergebnisse auf, und hier korrigiert jemand.
Gruss leduart



Bezug
                
Bezug
Beweisverfahren Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mi 25.02.2009
Autor: mondesflimmer

Nehme ich also nicht die explizite Bildungsvorschrift, sondern die rekursive??

Muss ich das? Und wieso?

Bezug
                        
Bezug
Beweisverfahren Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Mi 25.02.2009
Autor: leduart

Hallo
wo steht den bei mir irgendwo eine rekursive Vorschrift?
rekursiv waere: [mm] a_{n+1}=a_n*q [/mm]
explizit ist [mm] a_n=a*q^n [/mm]
mit der expliziten Formel kann man sofort fuer jedes n  [mm] a_n [/mm] ausrechnen also etwa  [mm] a_8=a*q^8 [/mm]  mit der rekursiven musst du [mm] a_7 [/mm] kennen, um das zu kennen brauchst du [mm] a_6 [/mm] usw.
Aber vielleicht hast du nur die Worte verwechselt?
Jetzt mach dich al ran, dann hast dus in 10 Min.

Nebenbei: wir sind kein chatraum, also begruesst man sich ,sagt die ueblichen Hoeflichkeitsformeln, wenn man Hilfe kriegt und verabschiedet sich !
Gruss leduart
Gruss leduart

Bezug
                                
Bezug
Beweisverfahren Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:29 Do 26.02.2009
Autor: mondesflimmer

Hallo Leduart,

verzeih.
Ich hatte ein -d in deiner Formel gelesen. Ist schon nicht hilfreich, wenn im Internetcafe die Formeln nicht vernünftig dargestellt werden.

Allerdings sind deine genannten Formeln schlichtweg ungenau und/oder falsch. Denn a steht meines Wissens und den verschiedenen Büchern nach nicht alleine endweder [mm] a_{n}, a_{1} [/mm] oder ähnliches. Oder meinst mit a vieleicht n?
Ich meine a muss doch in irgendeiner Weise definiert sein. Oder meinst du man kann jedes beliebige a in der expliziten Bildungsvorschrift einsetzen? Aber dann wäre es doch wieder [mm] a_{n}. [/mm] Oder nicht?

Gruß Mondesflimmer


Bezug
                                        
Bezug
Beweisverfahren Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Do 26.02.2009
Autor: fred97

Ihr hattet sicher die folgende Definition:

    Eine Folge [mm] [/mm] heißt eine geometrische Folge : [mm] \gdw [/mm] es ex. q [mm] \in \IR [/mm] mit [mm] a_n [/mm] = [mm] a_1 q^{n-1} [/mm] ( für n [mm] \ge [/mm] 1)


FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de