www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Bruchgleichung
Bruchgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruchgleichung: Warum - in Bruchgleichung
Status: (Frage) beantwortet Status 
Datum: 17:58 So 09.11.2014
Autor: MatheNoob__

Aufgabe
[mm] \bruch{2}{1+2x} [/mm] = [mm] \bruch{9}{3x +6} [/mm] - [mm] \bruch{1}{4-x} [/mm]

Hey :)
Also wenn man diese Aufgabe ausrechnet kommt ein Minus rein wo ich nicht verstehe warum aus dem PLUS ein MINUS wird.

Man multipliziert ja: mal 3(1+2x)(4-x)

und man erhält dann: 24 - 6x = 36 - 9x - 3 - 6x

Warum erhält man bei der ganz rechten 6x statt +6x -6x??

Mann hat ja: 1 mal 3(1+2x)(4-x)
Die (4-x) werden rausgestrichen und man rechnet dann ja: 3 mal 2x. Das gibt eigentlich doch + 6x???

Hoffe man versteht was ich meine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bruchgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 So 09.11.2014
Autor: DieAcht

Hallo und [willkommenmr]!


> [mm]\bruch{2}{1+2x}[/mm] = [mm]\bruch{9}{3x +6}[/mm] - [mm]\bruch{1}{4-x}[/mm]

Was ist denn die genaue Aufgabenstellung?

> Also wenn man diese Aufgabe ausrechnet kommt ein Minus
> rein wo ich nicht verstehe warum aus dem PLUS ein MINUS
> wird.
>  
> Man multipliziert ja: mal 3(1+2x)(4-x)

Hier komme ich leider schon nicht mehr mit.

Zu deiner Frage mit dem Minuszeichen: Es steht vor dem Bruch ein
Minuszeichen und im Zähler steht dann

      [mm] $-(a+b)=-a-b\$. [/mm]


Gruß
DieAcht

Bezug
        
Bezug
Bruchgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 09.11.2014
Autor: abakus


> [mm]\bruch{2}{1+2x}[/mm] = [mm]\bruch{9}{3x +6}[/mm] - [mm]\bruch{1}{4-x}[/mm]
> Hey :)
> Also wenn man diese Aufgabe ausrechnet kommt ein Minus
> rein wo ich nicht verstehe warum aus dem PLUS ein MINUS
> wird.

>

> Man multipliziert ja: mal 3(1+2x)(4-x)

Hallo,
das haut hinten und vorn nicht hin...
So, wie die Aufgabe da steht, müsste man sie mit 
(1+2x)*(3x+6)*(4-x) multiplizieren.
Angenommen, du hättest nur einen Tippfehler gemacht und der zweite Nenner wäre in Wiklichkeit 3+6x, dann hättest du doch den richtigen Rechenbefehl.
Beim Multiplizieren des letzten Summanden [mm]\bruch{1}{4-x}[/mm] mit  3(1+2x)(4-x) bleibt 3(1+2x)=3+6x übrig.
Da der letzte Bruch allerdings vom vorherigen Bruch SUBTRAHIERT wurde, ist am Ende
...-(3+6x) zu rechnen, woraus nach Auflösen der Klammer -3-6x   wird.
Gruß Abakus
>

> und man erhält dann: 24 - 6x = 36 - 9x - 3 - 6x

>

> Warum erhält man bei der ganz rechten 6x statt +6x -6x??

>

> Mann hat ja: 1 mal 3(1+2x)(4-x)
> Die (4-x) werden rausgestrichen und man rechnet dann ja: 3
> mal 2x. Das gibt eigentlich doch + 6x???

>

> Hoffe man versteht was ich meine

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
        
Bezug
Bruchgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 09.11.2014
Autor: Thomas_Aut

Hallo,
> [mm]\bruch{2}{1+2x}[/mm] = [mm]\bruch{9}{3x +6}[/mm] - [mm]\bruch{1}{4-x}[/mm]
>  Hey :)
>  Also wenn man diese Aufgabe ausrechnet kommt ein Minus
> rein wo ich nicht verstehe warum aus dem PLUS ein MINUS
> wird.
>  
> Man multipliziert ja: mal 3(1+2x)(4-x)
>  
> und man erhält dann: 24 - 6x = 36 - 9x - 3 - 6x

absolut konfus - was willst du überhaupt mal machen??

>  
> Warum erhält man bei der ganz rechten 6x statt +6x -6x??
>  
> Mann hat ja: 1 mal 3(1+2x)(4-x)
>  Die (4-x) werden rausgestrichen und man rechnet dann ja: 3
> mal 2x. Das gibt eigentlich doch + 6x???
>
> Hoffe man versteht was ich meine

Ich leider nicht.

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Also von vorne:

Du betrachtest

[mm]\bruch{2}{1+2x}[/mm] = [mm]\bruch{9}{3x +6}[/mm] - [mm]\bruch{1}{4-x}[/mm]

So :

Wir bringen mal die rechte Seite auf gleichen Nenner.

Pardon - ich habe links mit [mm] \frac{2}{1+x} [/mm] anstatt [mm] \frac{1}{1+2x} [/mm] gerechnet.

[mm]\bruch{2}{1+x} = \frac{9(4-x)-(3x-6)}{(3x+6)(4-x)} [/mm]

ausmultiplizieren liefert:

[mm] $\bruch{2}{1+x} [/mm] = [mm] \frac{30-12x}{-3x^2 +6x +24}$ [/mm]

Wir multiplizieren mit $1+x$ und [mm] $-3x^2 [/mm] +6x +24$

damit erhalten wir

[mm] $-6x^2 [/mm] +12x +48 = [mm] -12x^2 [/mm] +18x +30 $

den Rest schaffst du !

Gruß

Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de