www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL lösung
DGL lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL lösung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:27 Do 28.01.2010
Autor: KCT1987

Hi, ich hab ein Problem mit einer DGL.
Sie lautet:

y'(x) [mm] =(2y(x)+1)*\bruch{x}{x ^2+1} [/mm]

Also ich habs wie folgt gemacht:

zuerst ausmultiplizert und umgeformt:

[mm] y'(x)-\bruch{2x}{x^2+1}*y(x) =\bruch{x}{x^2+1} [/mm]

so jetzt zuerst die homogene gleichung:

[mm] \bruch{dy}{dx} [/mm] = [mm] \bruch{2x}{x^2+1}*y [/mm]

jetzt die trennung der variablen:

[mm] \bruch{dy}{y} [/mm] = [mm] \bruch{2x}{x^2+1} [/mm] dx
[mm] ln(y)=ln(x^2+1)+ln(K) [/mm]
[mm] y=(x^2+1)*K [/mm]

jetzt komm ich zur inhomogenen:

[mm] y'=2x*K+x^2*K'+K' [/mm]

einsetzen:

[mm] 2xK+x^2K'+K'-\bruch{2x(x^2+1)*K}{x^2+1} [/mm] = [mm] \bruch{x}{x^2+1} [/mm]

nach Umformung:

[mm] K'(x^2+1) [/mm] = [mm] \bruch{x}{x^2+1} [/mm]
K' = [mm] \bruch{x}{(x^2+1)^2} [/mm]

jetzt integrieren:

K = [mm] -\bruch{1}{2(x^2+1)} [/mm]


so und wenn ich jetzt K in y = [mm] (x^2+1)*K [/mm] einsetze kommt:

y(x) = - [mm] \bruch{1}{2} [/mm]

und da kann ja was nicht stimmen.

Also was habe ich falsch gemacht?

Danke schonmal


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Do 28.01.2010
Autor: schachuzipus

Hallo KCT1987,

> Hi, ich hab ein Problem mit einer DGL.
>  Sie lautet:
>  
> y'(x) [mm]=(2y(x)+1)*\bruch{x}{x ^2+1}[/mm]
>  
> Also ich habs wie folgt gemacht:
>  
> zuerst ausmultiplizert und umgeformt:
>  
> [mm]y'(x)-\bruch{2x}{x^2+1}*y(x) =\bruch{x}{x^2+1}[/mm]
>  
> so jetzt zuerst die homogene gleichung:
>  
> [mm]\bruch{dy}{dx}[/mm] = [mm]\bruch{2x}{x^2+1}*y[/mm]
>  
> jetzt die trennung der variablen:
>  
> [mm]\bruch{dy}{y}[/mm] = [mm]\bruch{2x}{x^2+1}[/mm] dx
>  [mm]ln(y)=ln(x^2+1)+ln(K)[/mm]
>  [mm]y=(x^2+1)*K[/mm]
>  
> jetzt komm ich zur inhomogenen:
>  
> [mm]y'=2x*K+x^2*K'+K'[/mm]
>  
> einsetzen:
>  
> [mm]2xK+x^2K'+K'-\bruch{2x(x^2+1)*K}{x^2+1}[/mm] = [mm]\bruch{x}{x^2+1}[/mm]
>  
> nach Umformung:
>  
> [mm]K'(x^2+1)[/mm] = [mm]\bruch{x}{x^2+1}[/mm]
>  K' = [mm]\bruch{x}{(x^2+1)^2}[/mm]
>  
> jetzt integrieren:
>  
> K = [mm]-\bruch{1}{2(x^2+1)}[/mm] [mm] \red{+T} [/mm]
>  
>
> so und wenn ich jetzt K in y = [mm](x^2+1)*K[/mm] einsetze kommt:
>  
> y(x) = - [mm]\bruch{1}{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

\red{+T(x^2+1)}

>
> und da kann ja was nicht stimmen.
>  
> Also was habe ich falsch gemacht?

Die Integrationskonstante bei der inh. Lösung unterschlagen


Dieses Ergebnis bestätigt MAPLE und auch meine Rechnung.

Ich habe aber direkt getrennt:

$y'=(2y+1)\cdot{}\frac{x}{x^2+1}$

$\Rightarrow \frac{1}{2y+1} \ dy} \ = \ \frac{x}{x^2+1} \ dx}$

$\Rightarrow \frac{1}{2}\ln|2y+1| \ = \ \frac{1}{2}\ln(x^2+1)+C$

Also $y=-\frac{1}{2}+\hat{C}\cdot{}(x^2+1)$

Gruß

schachuzipus

>  
> Danke schonmal
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
DGL lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Do 28.01.2010
Autor: KCT1987

Ach ja stimmt!
Danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de