www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und -vektoren
Eigenwerte und -vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und -vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 08.01.2007
Autor: fisch000

Aufgabe
Berechne die Eigenwerte und -vektoren :
3  1  1
2  4  2
1  1  3

Hallo Leute,
das Berechnen der Eigenwerte ist kein Problem, aber die Eigenvektoren bringen mich hier zur Verzweiflung. Als Eigenwerte habe ich 2 und 6 berechnet und diese dann jeweils eingestzt, wmit ich dann folgende Matrizen habe.
1  1  1          -3  1  1
2  2  2           2  -2  2
1  1  1           1  1  -3

Mir ist bekannt das man diese Matrizen mit dem Nullvektor gleichsetzten muss. Das Problem nun ist, wenn ich die Matrizen in Dreiecksform bringe erhalte ich in der 1. zwei Nullzeilen und in der 2. eine Nullzeile. Aber wie gehts nun weiter. Hoffe das hier jemand so nett ist und mir erklären könnte wie man das Ganze löst.

Mfg fisch

        
Bezug
Eigenwerte und -vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mo 08.01.2007
Autor: angela.h.b.


> Berechne die Eigenwerte und -vektoren :
>  3  1  1
>  2  4  2
>  1  1  3
>  Hallo Leute,
>  das Berechnen der Eigenwerte ist kein Problem, aber die
> Eigenvektoren bringen mich hier zur Verzweiflung. Als
> Eigenwerte habe ich 2 und 6 berechnet und diese dann
> jeweils eingestzt, wmit ich dann folgende Matrizen habe.
>  1  1  1          -3  1  1
>  2  2  2           2  -2  2
>  1  1  1           1  1  -3
>  
> Mir ist bekannt das man diese Matrizen mit dem Nullvektor
> gleichsetzten muss. Das Problem nun ist, wenn ich die
> Matrizen in Dreiecksform bringe erhalte ich in der 1. zwei
> Nullzeilen und in der 2. eine Nullzeile. Aber wie gehts nun
> weiter. Hoffe das hier jemand so nett ist und mir erklären
> könnte wie man das Ganze löst.

Hallo,

bei der zweiten Matrix landest Du also bei
1 -1  1
0 -1  2        
0  0  0   oder so ähnlich.

Das bedeutet, daß Du eine Variable frei wählen kannst, etwa z=t.
Es ist danny=2z=2t
und x=y-z=2t-t=t

Also [mm] \vektor{x \\ y \\ z}=\vektor{1 \\ 2t \\ t}=t\vektor{1 \\ 2 \\ 1}. [/mm] D.h. der von [mm] \vektor{1 \\ 2 \\ 1} [/mm] aufgespannte Raum ist der Kern Deiner Matrix.

Bei der ersten Matrix hast Du zwei Zeilen mit Nullen.

1  1  1        
0  0  0      
0  0  0      

Du kannst zwei Variable frei wählen, etw z=s und y=t. Dann ist x=-t-s und

[mm] \vektor{x \\ y \\ z}= \vektor{-t-s \\ t \\ s}= s\vektor{... \\ ... \\ ...}+t\vektor{...\\ ... \\ ...} [/mm]

Gruß v. Angela


Bezug
                
Bezug
Eigenwerte und -vektoren: Alles klar !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:22 Di 09.01.2007
Autor: fisch000

Danke jetzt hab ich es endlich verstanden. Vielen Dank für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de