www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - End. und Minimalpolynom
End. und Minimalpolynom < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

End. und Minimalpolynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:14 So 29.04.2007
Autor: alexmart

Aufgabe
Es sei [mm] \phi [/mm] ein Endomorphismus eines endlich-dimensionalen K-Vektorraumes V [mm] \not= [/mm] {0}, und [mm] m_{\phi} [/mm] bezeichne das Minimalpolynom von [mm] \phi [/mm] in K[x]. Ferner sei g [mm] \varepsilon [/mm] K[x] gegeben.

Zeigen Sie:
(a) Ist g teilerfrem zu [mm] m_{\phi}, [/mm] so ist [mm] g(\phi) [/mm] invertierbar.

(b) Ist [mm] g(\phi) [/mm] invertierbar, so ist auch [mm] h(\phi) [/mm] invertierbar für jedes h [mm] \varepsilon [/mm] K[x] mit h | g.

(c) Ist [mm] g(\phi) [/mm] invertierbar, so ist g teilerfremd zu [mm] m_{\phi}. [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich sitze gerade an meinem Matheblatt, was ich Montag abgeben muss. Leider habe ich bei der obigen Aufgabe Probleme, weil ich keinerlei Idee habe wie ich das zeigen soll.

Vielleicht gibt es hier ja Jemanden der einem Informatiker helfen möchte.

Vielen Dank im Voraus!

Mit freundlichen Grüßen
Alexander



        
Bezug
End. und Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 So 29.04.2007
Autor: statler

Hallo Alexander!

> Es sei [mm]\phi[/mm] ein Endomorphismus eines endlich-dimensionalen
> K-Vektorraumes V [mm]\not=[/mm] {0}, und [mm]m_{\phi}[/mm] bezeichne das
> Minimalpolynom von [mm]\phi[/mm] in K[x]. Ferner sei g [mm]\varepsilon[/mm]
> K[x] gegeben.
>  
> Zeigen Sie:
>  (a) Ist g teilerfrem zu [mm]m_{\phi},[/mm] so ist [mm]g(\phi)[/mm]
> invertierbar.

Ganz fix zu a):

Bei Teilerfremdheit kannst du 1 darstellen als Linarkombination von Minimalpolynom und g (über den euklidischen Algorithmus in Polynomringen) Wenn du in diese Darstellung [mm] \phi [/mm] einsetzt, erhältst du sofort a).

Guß aus HH-Harburg
Dieter


Bezug
        
Bezug
End. und Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 29.04.2007
Autor: felixf


> Es sei [mm]\phi[/mm] ein Endomorphismus eines endlich-dimensionalen
> K-Vektorraumes V [mm]\not=[/mm] {0}, und [mm]m_{\phi}[/mm] bezeichne das
> Minimalpolynom von [mm]\phi[/mm] in K[x]. Ferner sei g [mm]\varepsilon[/mm]
> K[x] gegeben.
>  
> Zeigen Sie:
>  (a) Ist g teilerfrem zu [mm]m_{\phi},[/mm] so ist [mm]g(\phi)[/mm]
> invertierbar.
>  
> (b) Ist [mm]g(\phi)[/mm] invertierbar, so ist auch [mm]h(\phi)[/mm]
> invertierbar für jedes h [mm]\varepsilon[/mm] K[x] mit h | g.

Wenn $h [mm] \mid [/mm] g$ gilt, so ist $g = h [mm] \tilde{h}$ [/mm] fuer ein [mm] $\tilde{h} \in [/mm] K[x]$, und es ist [mm] $h(\phi) \tilde{h}(\phi) [/mm] = [mm] g(\phi)$ [/mm] invertierbar. Damit ist [mm] $h(\phi) [\tilde{h}(\phi) g(\phi)^{-1}] [/mm] = [mm] id_V$. [/mm] Analog kannst du noch ein Linksinverses von [mm] $h(\phi)$ [/mm] finden.

> (c) Ist [mm]g(\phi)[/mm] invertierbar, so ist g teilerfremd zu
> [mm]m_{\phi}.[/mm]

Das geht ganz einfach, wenn du dir die Jordan-Normalform anschaust und die Beziehung des Minimalpolynoms dazu. Wenn $g$ und [mm] $m_\phi$ [/mm] nicht teilerfremd sind, gibt es einen gemeinsamen Teiler $h$. Nach (b) ist [mm] $h(\phi)$ [/mm] invertierbar.

Wenn $h$ jedoch ein nicht-konstanter Teiler des Minimalpolynoms ist, so kann [mm] $h(\phi)$ [/mm] nicht invertierbar sein. Ueberleg dir mal warum das so ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de