www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Exp-Verteilung
Exp-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp-Verteilung: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 00:24 Sa 15.12.2007
Autor: marcsn

Aufgabe
Die Zufallsgrößen [mm]X_1,..,X_n[/mm] seien unabhängig und Exponentialverteilt mit Parameter [mm]\alpha[/mm].

a) Bestimmen sie die Verteilungsfunktion von [mm]Z_n:=max(X_1,...,X_n)[/mm]
b) Bestimmen sie die Verteilungsfunktion von [mm]W_n:=min(X_1,...,X_n)[/mm]

Hallo mal wieder :)

Hab gerade die Aufgabe bearbeitet bin mir aber mit meinem Ergebnis nicht so wirklich sicher. Wäre super wenn sich das mal jemand kurz anschauen könnte

a)
Es ist aufgrund der Unabhängigkeit:

[mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le x]=(1-\alpha e^{-\alpha x})^n[/mm]


b)
Hier hab ich das Komplement angeschaut also:

[mm]F_{min}(x)=P[min(X_1,...,X_n)\le x]=1-P[min[X_1,...,X_n] > x]=1-(P[X_1 > x]\cdot \cdot P[X_n >x])[/mm]

und da weiter [mm]P[X_1 > x] = 1-P[X_1 \le x]= \alpha e^{-\alpha x}[/mm]

-> [mm]=1-(1-(1-\alpha e^{-\alpha x}))^n =1- (\alpha e^{-\alpha x})^n[/mm]



Gruß
Marc

        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:28 Sa 15.12.2007
Autor: luis52


>  Hallo mal wieder :)

Hallo Marc

>  
> Hab gerade die Aufgabe bearbeitet bin mir aber mit meinem
> Ergebnis nicht so wirklich sicher. Wäre super wenn sich das
> mal jemand kurz anschauen könnte

Schaun mer mal.

>  
> a)
>  Es ist aufgrund der Unabhängigkeit:
>  
> [mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le x]=(1-\alpha e^{-\alpha x})^n[/mm]
>  

[ok]

>
> b)
>  Hier hab ich das Komplement angeschaut also:
>  
> [mm]F_{min}(x)=P[min(X_1,...,X_n)\le x]=1-P[min[X_1,...,X_n] > x]=1-(P[X_1 > x]\cdot \cdot P[X_n >x])[/mm]
>  
> und da weiter [mm]P[X_1 > x] = 1-P[X_1 \le x]= \alpha e^{-\alpha x}[/mm]
>  
> -> [mm]=1-(1-(1-\alpha e^{-\alpha x}))^n =1- (\alpha e^{-\alpha x})^n[/mm]

[ok] Alles okay.

Na, es wird doch! ;-)

Fuers Archiv: Die Verteilungsfunktion des Maximums einer Stichprobe [mm] $X_1,...,X_n$ [/mm] ist [mm] $F^n(x)$, [/mm]
die des Minimums ist [mm] $1-(1-F(x))^n$. [/mm] Hierbei ist $F$ die Verteilungsfunktion von [mm] $X_i$. [/mm]


vg Luis

Bezug
                
Bezug
Exp-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 So 16.12.2007
Autor: koi

hallo!
ich hab diese aufgabe auch bearbeitet, kann aber das letzte gleichheitszeichen nicht ganz nachvollziehen.

[mm] F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le [/mm] x]
[mm] =(1-\alpha e^{-\alpha x})^n [/mm]

die verteilungsfunktion der exponentialverteilung ist doch
F(t) = [mm] (1-e^{-\alpha x}) [/mm] * Indikatorfunktion
meine lösung wäre jetzt
[mm] F_{max}(x)=...=(1- e^{-\alpha x})^n [/mm]

seh wohl grad mal wieder den wald vor lauter bäumen nicht, aber mir ist nicht klar, warum ich noch ein [mm] \alpha [/mm] im klammerausdruck habe

grüße koi


Bezug
                        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 16.12.2007
Autor: luis52


> hallo!
>  ich hab diese aufgabe auch bearbeitet, kann aber das
> letzte gleichheitszeichen nicht ganz nachvollziehen.
>  
> [mm]F_{max}(x)=P[max(X_1,...,X_n)\le x]=P[X_1 \le x]\cdot \cdot \cdot P[X_n \le[/mm]
> x]
>  [mm]=(1-\alpha e^{-\alpha x})^n[/mm]
>  
> die verteilungsfunktion der exponentialverteilung ist doch
> F(t) = [mm](1-e^{-\alpha x})[/mm] * Indikatorfunktion

Ein sehr guter Einwand

>  meine lösung wäre jetzt
>  [mm]F_{max}(x)=...=(1- e^{-\alpha x})^n[/mm]


[verwirrt] Gruebel, gruebel, wo ist denn der Unterschied zu Marcs Loesung?

Da [mm] $P(\mbox{Max}\le [/mm] x)=0$ fuer [mm] $x\le [/mm] 0$ ist dann  [mm] $F_{max}(x)=0$. [/mm]


vg Luis



Bezug
                                
Bezug
Exp-Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mo 17.12.2007
Autor: koi

danke für die antwort, hat mich ein wenig verwirrt, dass ich keinen unterschied gefunden hab:)
grüße koi

Bezug
                                
Bezug
Exp-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 17.12.2007
Autor: freakish

Hallo,
ich arbeite auch an der Aufgabe und verstehe deine Erklärung leider nicht, Luis. Arbeitet ihr hier nicht die ganze Zeit mit der Dichte, obwohl nach der Verteilungsfunktion gefragt ist?

Bezug
                                        
Bezug
Exp-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 17.12.2007
Autor: luis52

Hallo freakish,


>  ich arbeite auch an der Aufgabe und verstehe deine
> Erklärung leider nicht, Luis.

*Was* genau verstehst du denn nicht?

> Arbeitet ihr hier nicht die
> ganze Zeit mit der Dichte, obwohl nach der
> Verteilungsfunktion gefragt ist?

Nein.


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de