www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Exponentialreihe
Exponentialreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialreihe: Anfang richtig ?
Status: (Frage) beantwortet Status 
Datum: 22:44 Do 25.11.2010
Autor: TrockenNass

Aufgabe
Es sei [mm] (a_n)_{n\in \In} [/mm] eine komplexe Folge mit [mm] |a_n| \not= [/mm] 0 für fast alle [mm] n\in \IN. [/mm] Man zeige: Existiert [mm] \rho \in \IN [/mm] mit
[mm] \limes_{n\rightarrow\infty} \bruch{|a_n|}{|a_{n+1}|}=\rho, [/mm]
dann ist [mm] \rho [/mm] der Konvergenzradius der Reihe [mm] \summe_n a_n z^n [/mm] und für [mm] \rho [/mm] > 0 gilt [mm] \limes_{n\rightarrow\infty} \wurzel[n]{|a_n|}= \rho^{-1}. [/mm]

In einer langen Diskussion sind wir heute zu folgendem Schluss gekommen:

Wenn man zeigen will, dass eine Zahl [mm] \rho [/mm] der Konvergenzradius einer Potenzreihe ist, genügt es zu zeigen, dass diese Zahl dieselben Eigenschaften wie der Konvergenzradius hat, d.h. für z < [mm] \rho [/mm] muss die Potenzreihe konvergieren und für z > [mm] \rho [/mm] muss die Potenzreihe divergieren.

Ich würde jetzt auf die gesamte Reihe das Quotientenkriterium anwenden, dann kann man die Definition von [mm] \rho [/mm] := [mm] \limes_{n\rightarrow\infty} \bruch{|a_n|}{|a_{n+1}|} [/mm] benutzen und diese Eigenschaften zeigen.

Stimmt der Ansatz ???

        
Bezug
Exponentialreihe: Letzter Teil
Status: (Frage) beantwortet Status 
Datum: 22:49 Do 25.11.2010
Autor: TrockenNass

Aufgabe
Man berechne den Konvergenzradius der Reihe [mm] \summe_k b_k z^k [/mm] für [mm] b_n [/mm] := [mm] \bruch{n^n}{n!} [/mm] mit Hilfe von Teil b) und folgere [mm] \limes_{n\rightarrow\infty} \bruch{n}{\wurzel[n]{n!}} [/mm] =e

Hier schonmal der letzte Teil. Ich hab ihn noch nicht gemacht, weil ja noch die b) fehlt, daher ist er momentan nur Vollständigkeitshalber drin.

Bezug
                
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Do 25.11.2010
Autor: Marcel

Hallo,

> Man berechne den Konvergenzradius der Reihe [mm]\summe_k b_k z^k[/mm]
> für [mm]b_n[/mm] := [mm]\bruch{n^n}{n!}[/mm] mit Hilfe von Teil b) und
> folgere [mm]\limes_{n\rightarrow\infty} \bruch{n}{\wurzel[n]{n!}}[/mm]
> =e
>  Hier schonmal der letzte Teil. Ich hab ihn noch nicht
> gemacht, weil ja noch die b) fehlt, daher ist er momentan
> nur Vollständigkeitshalber drin.

naja, mit dem vorangegangenen Teil ist das einfach:
Die Reihe hat nach diesem Teil den Konvergenzradius (unter dem Limes ist stets $n [mm] \to \infty$ [/mm] hinzuzudenken)
[mm] $$\lim \left(\frac{n^n}{n!}*\frac{(n+1)!}{(n+1)^{n+1}}\right)\,,$$ [/mm]
was man zu
[mm] $$1/\lim(1\;+1/n)^n$$ [/mm]
umschreiben kann (das ist elementares Rechnen und Anwedung bekannter Rechenregeln für konvergente Folgen - ich habe es heute schon mehrmals gesehen und auch selber mal vorgerechnet, was Du auch siehst, wenn Du ein wenig im Forum danach stöberst). Letzteres ist aber gerade [mm] $=1/e\,.$ [/mm]

Zudem kann man den Konvergenzradius aber auch nach Cauchy-Hadamard zu
[mm] $$1/\left(\text{limsup} \sqrt[n]{\frac{n^n}{n!}}\right)=1/\left(\lim \frac{n}{\sqrt[n]{n!}}\right)$$ [/mm]
berechnen. Daraus folgt dann die Behauptung.

P.S.:
Nochmal kurz zu dem anderen Teil:
Bei einer Potenzreihe (mit Mittelpunkt [mm] $z_0=0$) [/mm] der Form [mm] $\sum a_k z^k$ [/mm] sind Deine Überlegungen mit $|z| < [mm] \rho$ [/mm] und $|z| > [mm] \rho$ [/mm] bzgl. des Konvergenzradius richtig. Aber bei einer PR der Form [mm] $\sum a_k (z-z_0)^k$ [/mm] (hier also Mittelpunkt [mm] $z_0$ [/mm] nicht notwendig [mm] $=0\,$) [/mm] müßtest Du natürlich analoges mit [mm] $|z-z_0| [/mm] < [mm] \rho$ [/mm] bzw. $> [mm] \rho$ [/mm] formulieren.

Gruß,
Marcel

Bezug
        
Bezug
Exponentialreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Do 25.11.2010
Autor: Marcel

Hallo,

> Es sei [mm](a_n)_{n\in \In}[/mm] eine komplexe Folge mit [mm]|a_n| \not=[/mm]
> 0 für fast alle [mm]n\in \IN.[/mm] Man zeige: Existiert [mm]\rho \in \IN[/mm]
> mit  [mm]\limes_{n\rightarrow\infty} \bruch{|a_n|}{|a_{n+1}|}=\rho,[/mm]
>  dann ist [mm]\rho[/mm] der Konvergenzradius der Reihe [mm]\summe_n a_n z^n[/mm]
> und für [mm]\rho[/mm] > 0 gilt [mm]\limes_{n\rightarrow\infty} \wurzel[n]{|a_n|}= \rho^{-1}.[/mm]
>  
> In einer langen Diskussion sind wir heute zu folgendem
> Schluss gekommen:
>  
> Wenn man zeigen will, dass eine Zahl [mm]\rho[/mm] der
> Konvergenzradius einer Potenzreihe ist, genügt es zu
> zeigen, dass diese Zahl dieselben Eigenschaften wie der
> Konvergenzradius hat, d.h. für z < [mm]\rho[/mm] muss die
> Potenzreihe konvergieren und für z > [mm]\rho[/mm] muss die
> Potenzreihe divergieren.

anstatt $z < [mm] \rho$ [/mm] sollte da $|z| < [mm] \rho$ [/mm] stehen, analoges für $z > [mm] \rho$ [/mm] (also auch dort $|z| > [mm] \rho$). [/mm]
  

> Ich würde jetzt auf die gesamte Reihe das
> Quotientenkriterium anwenden, dann kann man die Definition
> von [mm]\rho[/mm] := [mm]\limes_{n\rightarrow\infty} \bruch{|a_n|}{|a_{n+1}|}[/mm]
> benutzen und diese Eigenschaften zeigen.
>  
> Stimmt der Ansatz ???

Der Ansatz schon. Ich bin mir gerade nicht sicher, ob das mit dem Quotientenkriterium so einfach geht bzw. wie Du das nun genau meinst? Aber das sehe ich, wenn ich's mir hinschreibe (oder Du es mir hinschreibst ;-)).

Das ganze sollte dann wohl so wie []hier Im Beweis zu Satz 6.19 aussehen - beachte auch Bemerkung 6.20.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de