www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgaben
Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:32 So 29.05.2005
Autor: Schlaui

Liebe Leute,
schreiben diese Woche eine Klausur,es kommen auch Extremwertaufgaben dran und wir haben große Probleme bei drei folgenden Aufgaben:

1.Welche quadratische Pyramide gegebenen Volumens hat die kürzeste Seitenkante?

2.Welcher oben offene Zylinder hat bei gegebener Oberfläche das grüßte Volumen?

3.Eine Holzkugel mit Radius 4 cm soll so abgeschliffen werden, dass ein Kegel mit möglichst großem Volumen entsteht.

Besonders schwierig für sist es mit den Parametern zu rechenen, in Aufgabe 1 und 2 und bei Aufgabe 3 kennen wir weder Zielfkt, noch Nebenbedingungen.
Vielen Dank im voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 29.05.2005
Autor: Stefan

Hallo Schlaui!

Es entspricht nicht dem Sinn des Forums und auch nicht unseren Forenregeln, hier drei komplette Aufgaben ohne jegliche eigene Ansätze reinzustellen.

Ich gebe jetzt mal zu der ersten ein paar Tipps, und dann bist du gefordert!! Mit eigenen Ideen, mit Vorschlägen, mit Zwischenfragen... aber nicht mit passiver Konsumhaltung.

> 1.Welche quadratische Pyramide gegebenen Volumens hat die
> kürzeste Seitenkante?

Die Frage ist also: Gegeben ist das Volumen $V$. Bei welcher Grundseite $a$ ist dann die Seitenkante $s$ am kürzesten?

Im Allgemeinen ist die Höhe $h$ nach dem Satz des Pythagoras eine Funktion der Grundseite $a$ und der Seitenkante $s$.

Frage an dich: Wie genau ist hier die Beziehung?

Weiterhin ist das Volumen eine Funktion der Grundseite und der Höhe:

$V= [mm] \frac{1}{3} a^2 \cdot [/mm] h$.

Nun können wir $h$ nach dem Obigen als Funktion von $s$ und $a$ schreiben. Wir ersetzen $h$ durch diese Funktion, die von $s$ und $a$ abhängt und lösen dann nach $s$ auf.

Dann haben wir eine Funktion $s$, die von $V$ und $a$ abhängt:

$s(V,a)$.

Da aber $V$ als bekannt (konstant) vorausgesetzt ist, hängt $s$ nur von $a$ ab. Jetzt muss man das Minimum dieser Funktion suchen. Leite also diese Funktion $s(a)$ nach $a$ ab und mache die üblichen Betrachtungen (Nullstellen der ersten Ableitung, Ist für diese die zweite Ableitung kleiner als $0$?, Wie sieht es mit den Randpunkten aus?,...).

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de