www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Faire Entsch. - unfaire Münze
Faire Entsch. - unfaire Münze < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faire Entsch. - unfaire Münze: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:45 Mi 18.02.2009
Autor: alexmart

Aufgabe
Wir haben eine unfaire M ̈nze gegeben, bei der mit Wahrscheinlichkeit p das Wurfergebnis Zahl auftritt und mit Wahrscheinlichkeit (1 − p) das Ergebnis Kopf, wobei 0 < p < [mm] \bruch{1}{2} [/mm] gilt. Um mit dieser Münze zu einer fairen Entscheidung zu kommen, verwenden wir folgenden Algorithmus:

do
    w1 = Werfe Münze
    w2 = Werfe Münze
while (w1 == w2)

if ( w1 == Kopf )
       return "ja“
else
       return "nein“
            
(a) Zeigen Sie, dass fü̈r die Ausgabe des Algorithmus gilt:
                            Pr(Ausgabe ja“) = Pr(Ausgabe nein“) [mm] =\bruch{1}{2} [/mm]
(b) Bestimmen Sie die erwartete Laufzeit des Algorithmus!

Hallo,

zu dieser Aufgabe habe ich noch ein paar Fragen:

zu (b):

Die Laufzeit würde ich versuchen ausdrücken, indem ich mir erstmal die Wahrscheinlichkeit berechne, mit der die Schleife abbricht, d.h. wenn entweder ZZ oder KK eintritt.

Die Wahrscheinlichkeit wäre dann, für [mm] Pr(KK)=(1-p)^{2} [/mm] und für [mm] Pr(ZZ)=p^{2}. [/mm]
Zusammen ergibt sich die Wahrscheinlichkeit: Pr(KK oder ZZ) = [mm] (1-p)^{2} +p^{2}. [/mm]

D.h. wir suchen die erwarte Anzahl an Würfen bis zum ersten Erfolg. Deshalb würde ich die geometrische Verteilung unterstellen und damit wäre der Erwartungswert:

E(x) = [mm] \bruch{1}{Pr(KK oder ZZ)} [/mm] = [mm] \bruch{1}{(1-p)^{2} +p^{2}} [/mm]

und damit hätte ich die erwartete Laufzeit. Ist das richtig?

zu (a):

Bei diesem Aufgabenteil habe ich ein logisches Problem.
Wenn ich den Ausgang KK mit einer anderen Wahrscheinlichkeit als ZZ bekomme, dann ist doch die Aussage, dass "ja" und "nein" mit der gleichen Wahrscheinlichkeit zurückgegeben werden, doch ein Widerspruch. Kann mir jemand helfen?

Ich habe diese Aufgabe nur hier gepostet.

MFG
Alexander



        
Bezug
Faire Entsch. - unfaire Münze: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 18.02.2009
Autor: abakus


> Wir haben eine unfaire M ̈nze gegeben, bei der mit
> Wahrscheinlichkeit p das Wurfergebnis Zahl auftritt und mit
> Wahrscheinlichkeit (1 − p) das Ergebnis Kopf, wobei 0
> < p < [mm]\bruch{1}{2}[/mm] gilt. Um mit dieser Münze zu einer
> fairen Entscheidung zu kommen, verwenden wir folgenden
> Algorithmus:
>  
> do
>      w1 = Werfe Münze
>      w2 = Werfe Münze
>  while (w1 == w2)
>  
> if ( w1 == Kopf )
>         return "ja“
>  else
>         return "nein“
>              
> (a) Zeigen Sie, dass fü̈r die Ausgabe des Algorithmus
> gilt:
>                              Pr(Ausgabe ja“) = Pr(Ausgabe
> nein“) [mm]=\bruch{1}{2}[/mm]
>  (b) Bestimmen Sie die erwartete Laufzeit des Algorithmus!
>  
> Hallo,
>  
> zu dieser Aufgabe habe ich noch ein paar Fragen:
>  
> zu (b):
>  
> Die Laufzeit würde ich versuchen ausdrücken, indem ich mir
> erstmal die Wahrscheinlichkeit berechne, mit der die
> Schleife abbricht, d.h. wenn entweder ZZ oder KK eintritt.
>
> Die Wahrscheinlichkeit wäre dann, für [mm]Pr(KK)=(1-p)^{2}[/mm] und
> für [mm]Pr(ZZ)=p^{2}.[/mm]
>  Zusammen ergibt sich die Wahrscheinlichkeit: Pr(KK oder
> ZZ) = [mm](1-p)^{2} +p^{2}.[/mm]
>  
> D.h. wir suchen die erwarte Anzahl an Würfen bis zum ersten
> Erfolg. Deshalb würde ich die geometrische Verteilung
> unterstellen und damit wäre der Erwartungswert:
>  
> E(x) = [mm]\bruch{1}{Pr(KK oder ZZ)}[/mm] = [mm]\bruch{1}{(1-p)^{2} +p^{2}}[/mm]
>  
> und damit hätte ich die erwartete Laufzeit. Ist das
> richtig?
>  
> zu (a):
>
> Bei diesem Aufgabenteil habe ich ein logisches Problem.

Ja. Die Loop-while Schleife wird immer wieder erneut durchlaufen so lange der erste und zweite Wurf gleich sind.
Die Schleife wird nur verlassen, wenn die Wurffolge KZ oder ZK lautet.
Die Wahrscheinlichkeit dieser beiden Wurffolgen beträgt p(1-p) bzw. (1-p)p und ist somit für beide gleich.
Gruß Abakus


> Wenn ich den Ausgang KK mit einer anderen
> Wahrscheinlichkeit als ZZ bekomme, dann ist doch die
> Aussage, dass "ja" und "nein" mit der gleichen
> Wahrscheinlichkeit zurückgegeben werden, doch ein
> Widerspruch. Kann mir jemand helfen?
>  
> Ich habe diese Aufgabe nur hier gepostet.
>  
> MFG
>  Alexander
>  
>  


Bezug
                
Bezug
Faire Entsch. - unfaire Münze: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Mi 18.02.2009
Autor: alexmart

Hallo Abakus,

danke ich sehe es gerade. Wiedermal ein dummer Leichtsinnsfehler.

Natürlich stimmt dann das Ergebnis von (a) auch nicht, wobei mir da der Ansatz stimmig scheint.

MFG
Alexander

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de