www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Funktionenscharen
Funktionenscharen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Sa 14.03.2009
Autor: Musentochter

Aufgabe
Von einer quadratischen Funktionenschar fq (x) mit Df = R sind der Scheitel (1/q) mit q [mm] \in\ [/mm] R \ {0} sowie der Punkt A (3/0) (A [mm] \in\ [/mm] fq (x)) gegeben.

a) Bestimme den Funktionsterm der Schar
b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen dieser Punkte an.
c) Bestimme die Nullstellen der Funktionenschar in Abhängigkeit vom Parameter q.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo Leute! Diese Aufgabe verstehe ich überhaupt nicht, das ist Hausaufgabe, allerdings haben wir noch nicht erklärt bekommen, was eine Funktionenschar eigentlich ist.
Vielen Dank schonmal für die Hilfe!

        
Bezug
Funktionenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 14.03.2009
Autor: abakus


> Von einer quadratischen Funktionenschar fq (x) mit Df = R
> sind der Scheitel (1/q) mit q [mm]\in\[/mm] R \ {0} sowie der Punkt
> A (3/0) (A [mm]\in\[/mm] fq (x)) gegeben.
>  
> a) Bestimme den Funktionsterm der Schar
> b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen
> dieser Punkte an.
>  c) Bestimme die Nullstellen der Funktionenschar in
> Abhängigkeit vom Parameter q.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> Hallo Leute! Diese Aufgabe verstehe ich überhaupt nicht,
> das ist Hausaufgabe, allerdings haben wir noch nicht
> erklärt bekommen, was eine Funktionenschar eigentlich ist.
> Vielen Dank schonmal für die Hilfe!  

Hallo,
eine Funktionenschar sind unendlich viele Funktionen mit fast der gleichen Funktionsgleichung.
Ich gebe mal 2 Beispiele für lineare Funktionen:
1) Die Gleichung y=3x+n beschreibt unendlich viele Funktionen (eben eine ganze Schar von Funktionen). Wenn du für n eine 1 eine 5 oder eine 99 einsetzt, erhältst du die Funktionen y=3x+1 oder y=3x+5 oder y=3x+99.
Diese drei Funktionen (und alle anderen die du erhältst, wenn du für n andere Zahlen einsetzt) besitzen eine gemeinsame Eigenschaft (hier ist es der Anstieg 3)

2) Auch die Gleichung y=mx+4 beschreibt eine ganze Schar von Funktionen: alle linearen Funktionen mit beliebigen Anstiegen, aber dem gemeinsamen Achsenschnittpunkt (0|4).

In deiner Aufgabe sind die Bilder aller Funktionen Parabeln. Wähle dir einfach mal einige (mindestens drei) verschiedene Werte für q aus (z. B: q=1, q=2 und q=-1) und bestimme jeweils die Gleichung der Parabel, die durch A verläuft und (1|q) als Scheitelpinkt hat. Übrigens: wegen der Symmetrieeigenschaft von quadratischen Funktionen kennst du neben dem Punkt A sofort einen weiteren Punkt ...
Gruß Abakus



Bezug
                
Bezug
Funktionenscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Sa 14.03.2009
Autor: Musentochter

Aufgabe
Von einer quadratischen Funktionenschar fq (x) mit Df = R sind der Scheitel (1/q) mit q  R \ {0} sowie der Punkt A (3/0) (A  fq (x)) gegeben.

a) Bestimme den Funktionsterm der Schar
b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen dieser Punkte an.
c) Bestimme die Nullstellen der Funktionenschar in Abhängigkeit vom Parameter q.

Danke für die schnelle Antwort!

Das heißt, ich kann a) damit beantworten, indem ich drei verschiedene Gleichungen hinschreibe, weil es gar keine allgemeingültige Funktionsgleichung gibt? Aber hätte ich dann nicht unendlich viele Antworten?

Ich bin auch schon darauf gekommen, dass die zweite Nullstelle N bei (-1/0) liegt. Aber was heißt das jetzt für meine Aufgabe? Was bringt mir diese Nullstelle? Wie soll ich das jetzt alles ausrechnen? Und warum kann ich in b) nicht einfach einen meiner drei "auserwählten" Scheitelpunkte einsetzen? Oder muss ich zwei meiner Scheitelpunktsformeln gleichsetzen, z.b. die für q=1 und die für q=2, und dann nach x auflösen? c) verstehe ich überhaupt nicht, ich weiß doch, wo meine Nullstellen liegen! :-(

Bezug
                        
Bezug
Funktionenscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 14.03.2009
Autor: Somebody


> Von einer quadratischen Funktionenschar fq (x) mit Df = R
> sind der Scheitel (1/q) mit q  R \ {0} sowie der Punkt A
> (3/0) (A  fq (x)) gegeben.
>
> a) Bestimme den Funktionsterm der Schar
> b) Die Funktionenschar besitzt gemeinsame Punkte. Gib einen
> dieser Punkte an.
> c) Bestimme die Nullstellen der Funktionenschar in
> Abhängigkeit vom Parameter q.
>
> Danke für die schnelle Antwort!
>  
> Das heißt, ich kann a) damit beantworten, indem ich drei
> verschiedene Gleichungen hinschreibe, weil es gar keine
> allgemeingültige Funktionsgleichung gibt? Aber hätte ich
> dann nicht unendlich viele Antworten?
>  
> Ich bin auch schon darauf gekommen, dass die zweite
> Nullstelle N bei (-1/0) liegt.

[ok]

> Aber was heißt das jetzt für
> meine Aufgabe? Was bringt mir diese Nullstelle? Wie soll
> ich das jetzt alles ausrechnen? Und warum kann ich in b)
> nicht einfach einen meiner drei "auserwählten"
> Scheitelpunkte einsetzen? Oder muss ich zwei meiner
> Scheitelpunktsformeln gleichsetzen, z.b. die für q=1 und
> die für q=2, und dann nach x auflösen?

Im Prinzip kannst Du alle Information, die Du über $f(x)$ (in Abhängigkeit von $q$) weisst, in den Ansatz [mm] $f(x)=ax^2+bx+c$ [/mm] einsetzen. Dies ergibt ein lineares Gleichungssystem für die Koeffizienten $a,b,c$. Löse dieses Gleichungssystem nach $a,b,c$ auf und behandle dabei $q$ wie eine gegebene konstante Zahl ("Parameter" des Gleichungssystems).

Am einfachsten geht's aber mit der Scheitelpunktsform der quadratischen Funktion $f(x)$: ist [mm] $S(x_S|y_S)$ [/mm] der Scheitelpunkt ihres Graphen, dann gilt [mm] $f(x)=a\cdot(x-x_S)^2+y_S$. [/mm]

Bei Deiner Aufgabe ist [mm] $x_S=1$ [/mm] und [mm] $y_S=q$ [/mm] und daher [mm] $f_q(x)=a\cdot(x-1)^2+q$. [/mm] Nun muss zusätzlich aber noch gelten, dass $A(3|0)$ auf dem Graphen von $f$ liegt. Mit anderen Worten, es muss $f(3)=0$ sein. Es muss somit gelten: [mm] $f(3)=a\cdot (3-1)^2+q=0$. [/mm] Daraus kannst Du $a$ als Funktion von $q$ erhalten. Einsetzen dieses Wertes für $a$ im Ansatz [mm] $f_q(x)=a\cdot (x-1)^2+q$ [/mm] liefert den gesuchten Term der Funktionenschar [mm] $f_q$. [/mm]

> c) verstehe ich
> überhaupt nicht, ich weiß doch, wo meine Nullstellen
> liegen! :-(

Die Nullstellen sind halt unabhängig von $q$. Schreibe diese beiden Nullstellen einfach als Antwort hin. Bem: Nachdem man b) gelöst hat, kann man eben auch die Gleichung [mm] $f_q(x)=0$, [/mm] in der noch der Parameter $q$ auftritt, nach $x$ auflösen. Es zeigt sich, dass, sofern [mm] $q\neq [/mm] 0$ ist, diese Nullstellengleichung immer dieselben zwei Lösungen [mm] $x_1=3$ [/mm] und [mm] $x_2=-1$ [/mm] hat.

Bezug
                                
Bezug
Funktionenscharen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 Mo 16.03.2009
Autor: Musentochter

Oh, da hab ich wohl zu kompliziert gedacht. Vielen Dank für die schnelle und wirklich gut erklärte Antwort!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de