www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: So Richtig?
Status: (Frage) beantwortet Status 
Datum: 10:58 Sa 25.04.2009
Autor: Pille456

Aufgabe
Ist g: [mm] \IR \to \IR, [/mm] x [mm] \to [/mm] |x| gleichmäßig stetig?

Hi!
Frage wie immer oben, mein Lösungsansatz:
Es muss ja gelten: [mm] |x-y|<\delta \Rightarrow |g(x)-g(y)|<\varepsilon [/mm]
Nun mache ich eine Fallunterscheidung für rechts und einmal links der y-Achse:
1. Fall: [mm] x>y\ge0 [/mm] : |x-y| = x-y< [mm] \delte [/mm] und ||x|-|y|| =|x-y| = x-y [mm] <\varepsilon. [/mm] Also wähle ich [mm] x-y<\varepsilon [/mm] = [mm] \delta [/mm] und habe auf der positiv Seite der y-Achse schonmal gleichmäßige Stetigkeit oder?
2. Fall: x = -x, y = -y (wobei [mm] y\not=0 [/mm] und x>y) |-x+y| = |x-y| = [mm] x-y<\delta [/mm] und ||-x|-|-y|| = |x-y| = [mm] x-y<\varepsilon [/mm] und kann auch in diesem Fall [mm] x-y<\varepsilon=\delta [/mm] wählen und habe somit auch auf der negativen Seite der y-Achse eine gleichmäßige Steigung und damit für den gesamten Graphen.

        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Sa 25.04.2009
Autor: Gonozal_IX

Hallo Pille,

es gilt einfacherweise [mm]||x| - |y|| \le |x-y|[/mm] für alle [mm]x,y \in \IR[/mm], was du ja eigentlich auch gezeigt hast.

Es geht aber sogar ganz ohne Voraussetzungen, sondern halt ganz allgemein und ist meines Erachtens nach einfacher zu zeigen. Und dann bist du ja fertig.

MfG,
Gono.

Bezug
                
Bezug
Gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Sa 25.04.2009
Autor: Pille456

Könnte es sogar sein, dass g(x) Lipschitz-Stetig ist?
Hierfür muss ja gelten:
$ ||x| - |y|| [mm] \le [/mm] L*|x-y| $ und da ja $ ||x| - |y|| [mm] \le [/mm] |x-y| $ gilt, muss ich L [mm] \ge [/mm] 1 setzen.

Bezug
                        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 25.04.2009
Autor: XPatrickX

Hallo,

ja das ist richtig!

In der Regel würde man das hier das kleinstmögliche L wählen, also $L:=1$

Übrigens:
Dass die Funktion (außerhalb das Nullpunktes) L-stetig ist, sieht man übrigens sofort daran, dass die Ableitung beschränkt ist. [mm] x_0=0 [/mm] müsste man dann noch getrennt untersuchen, da |x| dort nicht differenzierbar ist. Aber auch dort liegt natürlich L-stetigkeit vor, wie du ja oben gezeigt hast.

Gruß Patrick


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de