www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Gleichschenkliges Dreieck
Gleichschenkliges Dreieck < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichschenkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 17.05.2009
Autor: Mandy_90

Aufgabe
Beweisen Sie vektoriell: In einem gleichschenkligen Dreieck ist die Halbierende der Grundseite orthogonal zur Grundseite.

Hallo^^

Ich hab zu dieser Aufgabe die Lösung,nur versteh ich da einen schritt nicht.
Die Lösung lautet:

[mm] \vec{a}^{2}=\vec{b}^{2} [/mm] --> [mm] \vec{a}^{2}-\vec{b}^{2}=0 [/mm] --> [mm] 0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b}) [/mm] --> [mm] \overrightarrow{CH}\perp\overrightarrow{AB}. [/mm]

Also bis zum vorletzten Schritt hab ichs verstanden,ich versteh nur nicht wie man aus [mm] 0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b}) [/mm] folgern kann,dass [mm] \overrightarrow{CH}\perp\overrightarrow{AB} [/mm] ist.
Kann mir das vielleicht jemand erklären?

Vielen Dank

        
Bezug
Gleichschenkliges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 So 17.05.2009
Autor: mathemak


> Beweisen Sie vektoriell: In einem gleichschenkligen Dreieck
> ist die Halbierende der Grundseite orthogonal zur
> Grundseite.
>  Hallo^^
>  
> Ich hab zu dieser Aufgabe die Lösung,nur versteh ich da
> einen schritt nicht.
>  Die Lösung lautet:
>  
> [mm]\vec{a}^{2}=\vec{b}^{2}[/mm] --> [mm]\vec{a}^{2}-\vec{b}^{2}=0[/mm] -->
> [mm]0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b})[/mm] -->
> [mm]\overrightarrow{CH}\perp\overrightarrow{AB}.[/mm]
>  
> Also bis zum vorletzten Schritt hab ichs verstanden,ich
> versteh nur nicht wie man aus
> [mm]0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b})[/mm] folgern kann,dass
> [mm]\overrightarrow{CH}\perp\overrightarrow{AB}[/mm] ist.
>  Kann mir das vielleicht jemand erklären?
>  

Versuch's mal mit Einsetzen:

[mm] $\vec{a}^2 [/mm] - [mm] \vec{b}^2 [/mm] = [mm] (\vec{a} [/mm] + [mm] \vec{b})(\vec{a}-\vec{b})$ [/mm]

Binom?

Gruß

Mathemak


Bezug
                
Bezug
Gleichschenkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 17.05.2009
Autor: Mandy_90


> > Beweisen Sie vektoriell: In einem gleichschenkligen Dreieck
> > ist die Halbierende der Grundseite orthogonal zur
> > Grundseite.
>  >  Hallo^^
>  >  
> > Ich hab zu dieser Aufgabe die Lösung,nur versteh ich da
> > einen schritt nicht.
>  >  Die Lösung lautet:
>  >  
> > [mm]\vec{a}^{2}=\vec{b}^{2}[/mm] --> [mm]\vec{a}^{2}-\vec{b}^{2}=0[/mm] -->
> > [mm]0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b})[/mm] -->
> > [mm]\overrightarrow{CH}\perp\overrightarrow{AB}.[/mm]
>  >  
> > Also bis zum vorletzten Schritt hab ichs verstanden,ich
> > versteh nur nicht wie man aus
> > [mm]0.5*(\vec{a}+\vec{b})*(\vec{a}-\vec{b})[/mm] folgern kann,dass
> > [mm]\overrightarrow{CH}\perp\overrightarrow{AB}[/mm] ist.
>  >  Kann mir das vielleicht jemand erklären?
>  >  
>
> Versuch's mal mit Einsetzen:
>  
> [mm]\vec{a}^2 - \vec{b}^2 = (\vec{a} + \vec{b})(\vec{a}-\vec{b})[/mm]
>  
> Binom?
>  

Ja,danke so weit war ich schon,dann hab ich [mm] 0.5*(\vec{a}^2 [/mm] - [mm] \vec{b}^2)=0 [/mm] aber wie ich komm ich hiervon dadrauf,dass [mm] \overrightarrow{CH}\perp\overrightarrow{AB} [/mm] ist?

lg

Bezug
                        
Bezug
Gleichschenkliges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 17.05.2009
Autor: leduart

Hallo
hast du mal (a+b)/2 und (a-b)/2 (Vektoren) eingetragen?
Und wenn das Skalarprodukt von 2 Vektoren 0 ist, was ist dann der winkel zwischen ihnen?
Gruss leduart

Bezug
                                
Bezug
Gleichschenkliges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 So 17.05.2009
Autor: Mandy_90


> Hallo
>  hast du mal (a+b)/2 und (a-b)/2 (Vektoren) eingetragen?
>  Und wenn das Skalarprodukt von 2 Vektoren 0 ist, was ist
> dann der winkel zwischen ihnen?


Achso,ja klar 90°.Nur eine Frage hab ich noch.Kann ich davon ausgehen,dass in einem gleichschnekligen Dreieck alle 3 Seiten gleich lang sind?

lg


Bezug
                                        
Bezug
Gleichschenkliges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 So 17.05.2009
Autor: Slartibartfast

Hallo Mandy_90,

> Kann ich
> davon ausgehen,dass in einem gleichschnekligen Dreieck alle
> 3 Seiten gleich lang sind?

Auf keinen Fall - das wäre dann ein gleichseitiges Dreieck!


Gruß
Slartibartfast


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de