www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichungssystem Extrema +NB
Gleichungssystem Extrema +NB < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem Extrema +NB: Hilfe/Tipps beim Lösen
Status: (Frage) beantwortet Status 
Datum: 12:31 Mo 04.02.2013
Autor: v6bastian

Aufgabe
A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

A2: f(x,y) = 4xy ; NB = 4x²+9y²=36

Hallo zusammen.

Ich stagniere ein wenig an dem Gleichungssystemen zweier Aufgaben. Könntet Ihr bitte Tipps geben und ggf. beim Lösen helfen.

Mit der Gaus'schen Elimination kam ich wegen den Potenzen und der Tatsache das zwei Unbekannte in einem Term stehen nicht weiter. Und beim Addieren, Subtrahieren, Multiplizieren und Dividieren fehlt es mir Wohl an Weitblick bzw. Ideen. Was kam an der Stelle generell tun? Gibt es hierfür ein gesondertes Verfahren?

Mein Ansatz bei A1 war:

A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

[mm] f_{x} [/mm] = 3x²-y ; [mm] f_{y} [/mm] = 2y-x
[mm] NB_{x} [/mm] = 2x   ; [mm] NB_{y} [/mm] = 1

Folgendes G-System folgt daraus:

3x² -  y  + k2x =0
-x  + 2y + k1   =0
x²  +  y           =0

Mein Ansatz bei A2 war:

A2: f(x,y) = 4xy ; NB = 4x²+9y²=36

[mm] f_{x} [/mm] = 4y ; [mm] f_{y} [/mm] = 4x
[mm] NB_{x} [/mm] = 8x   ; [mm] NB_{y} [/mm] = 18y

Folgendes G-System folgt daraus:

4y + k8x   =0
4x + k18y =0
4x²+ 9y²  =36

Danke im Voraus
Bastian

        
Bezug
Gleichungssystem Extrema +NB: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mo 04.02.2013
Autor: angela.h.b.


Hallo,

Gleichungssysteme, die nicht linear sind, können ja sehr verschieden ausfallen.
Eine allgemeingültige Vorgehensweise, die immer funktioniert, gibt  es nicht.
Bei Lagrangeaugaben ist es oftmals gut, wenn man zunächst einmal den Parameter [mm] \lambda [/mm] (bzw. bei Dir:k) rauswirft, denn es ist ja eine Hilfsvariable, für die man sich meist nicht weiter interessiert.
Ansonsten: gut ist, was die Sache einfach macht...
Viel Üben und selbst rechnen hilft mehr als lange Erklärungen.


> A1: f(x,y) = x³+y²-xy ; NB = x²+y=0

>

> Mein Ansatz bei A1 war:
>  
> A1: f(x,y) = x³+y²-xy ; NB = x²+y=0
>  
> [mm]f_{x}[/mm] = 3x²-y ; [mm]f_{y}[/mm] = 2y-x
>  [mm]NB_{x}[/mm] = 2x   ; [mm]NB_{y}[/mm] = 1

Ja.

>  
> Folgendes G-System folgt daraus:
>  
>   I.3x² -  y  + k2x =0
>  II. -x  + 2y + k1   =0
>  III.x²  +  y           =0

Genau.

A.
Ich würde bei diesem Gleichungssystem damit beginnen,  II. nach k aufzulösen,  und dieses k in I. und III. einzusetzen.

Ergibt:
  I'. [mm] 0=3x^2-y+(x-2y)*2y=3x^2-y+2xy-4y^2 [/mm]
III'. [mm] x^2+y=0. [/mm]

Nun kannst Du III' nach y auflösen, in I' einsetzen und die möglichen x-Werte errechnen.

B.
Fall Du damit beginnen möchtest, zunächst das k in I. freizustellen, mußt Du den Fall, daß x=0 ist, gesondert untersuchen.

Für [mm] x\not=0 [/mm] bekommst Du [mm] k=\bruch{y-3x^2}{2x}, [/mm] setzt in II. ein, und machst damit irgendwie weiter.
Für x=0 bekommst Du  "automatisch" aus I. auch y=0, eingesetzt in II. k=0, und eingesetzt in III. eine wahre Aussage. (0|0) ist also ein kritischer  Punkt

C.
Du könntest auch zunächst aus III. [mm] y=-x^2 [/mm] gewinnen, dies in die beiden anderen Gleichungen einsetzen und gucken, wie Du weiterkommst.

D.
In der Tat  könntest Du  durch passendes Addieren von Gleichungen in 2 der Gleichungen das y schnell loswerden,
oder das Quadrat in der ersten Gleichung herauswerfen.
Vieles ist möglich.

Am besten beginnst Du mal, und wenn Du nicht zur Lösung kommst, zeige mal vor, was Du getan und gerechnet hast.







> A2: f(x,y) = 4xy ; NB = 4x²+9y²=36
>  
> Mein Ansatz bei A2 war:
>  
>  
> [mm]f_{x}[/mm] = 4y ; [mm]f_{y}[/mm] = 4x
>  [mm]NB_{x}[/mm] = 8x   ; [mm]NB_{y}[/mm] = 18y
>  
> Folgendes G-System folgt daraus:
>  
> 4y + k8x   =0
>  4x + k18y =0
>  4x²+ 9y²  =36

Alles richtig bisher.
Vielleicht startest Du mal, nachdem Du Dich mit Aufg. 1 nach Anleitung vergnügt hast, hier einen eigenen Lösungsversuch.

LG Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de