www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Grenzwert und Stetigkeit
Grenzwert und Stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert und Stetigkeit: Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:02 So 09.11.2008
Autor: martin7

Aufgabe
Wählen Sie ein a [mm] \in \IR [/mm] so dass

[mm] \limes_{x\rightarrow 3} \bruch{x^2+2x+a}{x-2} [/mm]

existiert. Berechnen Sie den Grenzwert!

Bin dieses Problem folgendermassen angegangen.

Habe als erstes die Polynomdivision angewendet

[mm] x^2 [/mm] + 2x + a : x - 2 = x + 4
[mm] x^2 [/mm]  - 2x
0      +4x + a
          4x -8

--> -8 = a

[mm] \limes_{x\rightarrow 3}\bruch{3^2+2*3+(-8)}{3-2}=7 [/mm]

Ist das alles richtig so?

Vielen Dank für jegliche Bemühungen!

Lg
Martin

Erst-Poster Satz:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Grenzwert und Stetigkeit: Aufgabenstellung korrekt?
Status: (Antwort) fertig Status 
Datum: 12:07 So 09.11.2008
Autor: Loddar

Hallo Martin!


Ist die Aufgabenstellung so korrekt widergegeben? Insbesondere der Nenne sowie der Gesuchte Grenzwert für $x \ [mm] \rightarrow [/mm] \ [mm] \red{3}$ [/mm] ?

Denn in der dargestellten Form existiert der Grenzwert immer!

Sollte es jeodch im Nenner $x-3_$ oder der Grenzwert [mm] $x\rightarrow [/mm] 2$ lauten, existiert der Grenzwert nur, wenn der Zähler ebenfalls Null wird für den gesuchten Grenzwert.

Es muss dann also gelten: [mm] $z(x_0) [/mm] \ = \ 0$ !


Gruß
Loddar


Bezug
                
Bezug
Grenzwert und Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 So 09.11.2008
Autor: martin7

Hallo Loddar!

Angabe stimmt genau so wie ich sie gepostet habe.

Ich habe mir das angeschaut und mein erster Gedanke war eigentlich, dass hierfür immer ein Grenzwert existieren muss.

Stimmt also meine Lösung soweit?

lg
Martin

Bezug
                        
Bezug
Grenzwert und Stetigkeit: zuviel Aufwand
Status: (Antwort) fertig Status 
Datum: 12:35 So 09.11.2008
Autor: Loddar

Hallo Martin!


> Ich habe mir das angeschaut und mein erster Gedanke war
> eigentlich, dass hierfür immer ein Grenzwert existieren
> muss.

[ok] Aber warum hast du dann die MBPolynomdivision durchgeführt?

Das war doch dann viel zuviel Aufwand.


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert und Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 09.11.2008
Autor: martin7

Dachte eben, dass ich das mit der Polynomdivision machen muss.

Danke für die Hilfe!

Lg
M

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de