www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Invertieren
Invertieren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:42 Mi 09.02.2011
Autor: Karander

Hi, normal wenn ich eine Matrix invertieren will mache ich es, so dass ich sie zusammen mit einer Einheitsmatrix umforme und sobald meine "Ausgangsmatrix" die Form einer Einheitsmatrix hat, hat die umgeformte Einheitsmatrix die Form der invertierten. Was mach ich aber in der folgenden Situation?

[mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} [/mm]

Was kann ich machen um die erste Matrix in die Einheitsmatrix umzuformen und wie wirkt es sich aus auf die andere?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Invertieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 09.02.2011
Autor: kamaleonti


> Hi, normal wenn ich eine Matrix invertieren will mache ich
> es, so dass ich sie zusammen mit einer Einheitsmatrix
> umforme und sobald meine "Ausgangsmatrix" die Form einer
> Einheitsmatrix hat, hat die umgeformte Einheitsmatrix die
> Form der invertierten. Was mach ich aber in der folgenden
> Situation?
>  
> [mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}[/mm]
>  
> Was kann ich machen um die erste Matrix in die
> Einheitsmatrix umzuformen und wie wirkt es sich aus auf die
> andere

Hallo,

Wenn du eine invertierbare Matrix A hast, machst du im Prinzip genau das, was du schon angedeutet hast. Indem du am Anfang die Einheitsmatrix E rechts neben deine Matrix A schreibst, die du invertieren willst, erhältst du eine erweiterte Matrix der Form (A|E).
Nun führst du solange Zeilenoperationen durch, bis links die Einheitsmatrix steht. Die Zeilenoperationen sind vom Prinzip her eine linksseitige Multiplikationen mit einer invertierbaren Matrix H. D. h. da du am Ende links die Einheitsmatrix stehen hast, muss gelten HA=E, also [mm] H=A^{-1}. [/mm] Da du mit den Zeilenoperation aber auch die rechts stehende Einheitsmatrix E linksseitig mit H multiplizierst, steht am Ende rechts [mm] HE=A^{-1}E=A^{-1} [/mm] deine invertierbare Matrix:
$(A|E) [mm] \leadsto (HA|HE)=(E|A^{-1})$ [/mm]

Anmerkung: Das Verfahren kannst du auch allgemein anwenden, um zu überprüfen, ob eine Matrix invertierbar ist. Wenn es dir nich möglich ist, links in die Einheitsmatrix umzuformen, so ist die Matrix nicht invertierbar. Das ist bei dir der Fall, weil 2. und 3. Zeile linear abhängig sind.

Kamaleonti:-)
  

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Invertieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Mi 09.02.2011
Autor: Karander

Ahso, also das bedeutet, dass das diese Matrix nicht invertierbar ist?
[mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}[/mm]

Hm... dann hab ich wohl was falsch verstanden. Denn eigentlich besteht meine Aufgabe darin die Eigenwerte von [mm]f^{-1}[/mm] zu bestimmen wobei gilt f: [mm]\IR^3\rightarrow\IR^3[/mm], x[mm]\rightarrow[/mm]Ax

mit A=[mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}[/mm]

Vor 10 muniten hab ich noch gedacht ich müsste dazu A invertieren aber das stimmt so wohl nicht^^

Bezug
                        
Bezug
Invertieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 09.02.2011
Autor: fred97


> Ahso, also das bedeutet, dass das diese Matrix nicht
> invertierbar ist?
>  [mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}[/mm]

Ja, diese Matrix ist nicht invertierbar !

>  
> Hm... dann hab ich wohl was falsch verstanden. Denn
> eigentlich besteht meine Aufgabe darin die Eigenwerte von
> [mm]f^{-1}[/mm] zu bestimmen wobei gilt f: [mm]\IR^3\rightarrow\IR^3[/mm],
> x[mm]\rightarrow[/mm]Ax
>  
> mit A=[mm]\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}[/mm]

Auch diese matrix ist nicht invertierbar !

>  
> Vor 10 muniten hab ich noch gedacht ich müsste dazu A
> invertieren aber das stimmt so wohl nicht^^

Vielleicht hat sich der Aufgabensteller vertan oder Du hast etwas falsch abgeschrieben.

FRED


Bezug
                                
Bezug
Invertieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 09.02.2011
Autor: Karander

Aber meine Vorgehensweise war richtig, dass zur Bestimmung der Eigenwerte von [mm]f^{-1}[/mm] ich die [mm]M^B_B(f)[/mm] invertiere, oder?

Bezug
                                        
Bezug
Invertieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Mi 09.02.2011
Autor: kamaleonti

Das war ein nicht hilfreicher Beitrag.
Bezug
                                                
Bezug
Invertieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Mi 09.02.2011
Autor: Karander

Ja, das schon ich meine damit nur, dass zum Ausrechnen der Eigenwerte ( wie von dir beschirieben ) der Funktion f brauch ich die Darstellungsmatrix von f. Meine Frage war jetzt nur ob zum Ausrechnen der Eigenwerte der invertierten Funktion ich einfach nur die Darstellungsmatrix von f invertieren und dann mit dieser, wie beschrieben, weiterrechnen muss.

Bezug
                                                        
Bezug
Invertieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mi 09.02.2011
Autor: fred97


> Ja, das schon ich meine damit nur, dass zum Ausrechnen der
> Eigenwerte ( wie von dir beschirieben ) der Funktion f
> brauch ich die Darstellungsmatrix von f. Meine Frage war
> jetzt nur ob zum Ausrechnen der Eigenwerte der invertierten
> Funktion ich einfach nur die Darstellungsmatrix von f
> invertieren und dann mit dieser, wie beschrieben,
> weiterrechnen muss.

Ja, so kannst Du das machen

FRED

Bezug
                                                                
Bezug
Invertieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Mi 09.02.2011
Autor: Karander

Ok, danke für die schnelle Antwort :)

Gruß

Bezug
        
Bezug
Invertieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:04 Mi 09.02.2011
Autor: Steffi21

Hallo, deine 2. und 3. Zeile sind linear abhängig, sind die so gegeben? Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de