www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 24.08.2008
Autor: kushkush

Aufgabe
5. Schreibe in der Form r+ si (r,s [mm] \in [/mm] R) :

a) [mm] \bruch{2-i}{1+2i} [/mm]
b) [mm] \bruch{5+2i}{5-2i} [/mm]
c) [mm] \bruch{i}{2-i} [/mm]
d) [mm] \bruch{-5+7i}{4-6i} [/mm]
e) [mm] \bruch{-2+i}{3-i}/ \bruch{5+i}{2-i} [/mm]

7. Berechne die Polarform folgender komplexer Zahlen:

a) z = 1+i
b) z= 3+4i
c) z= i
d) z= [mm] -\bruch{1}{√2}-\bruch{1}{√2}i [/mm]
e) z= -3
f) z= 0



Brauche ich bei 5. nur mit dem unteren konjugiert-komplexen teil zu multiplizieren?

Und wie komme ich bei 6. auf die Polarform?


Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.



        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 So 24.08.2008
Autor: schachuzipus

Hallo kushkush,

> 5. Schreibe in der Form r+ si (r,s [mm]\in[/mm] R) :
>  
> a) [mm]\bruch{2-i}{1+2i}[/mm]
> b) [mm]\bruch{5+2i}{5-2i}[/mm]
> c) [mm]\bruch{i}{2-i}[/mm]
> d) [mm]\bruch{-5+7i}{4-6i}[/mm]
> e) [mm]\bruch{-2+i}{3-i}/ \bruch{5+i}{2-i}[/mm]
>
> 7. Berechne die Polarform folgender komplexer Zahlen:
>
> a) z = 1+i
> b) z= 3+4i
> c) z= i
> d) z= [mm]-\bruch{1}{√2}-\bruch{1}{√2}i[/mm]

Schreibe doch die Wurzeln so: \wurzel{2}

Das andere wird irgendwie nicht angezeigt

>  e) z= -3
> f) z= 0
>
>
>
> Brauche ich bei 5. nur mit dem unteren konjugiert-komplexen
> teil zu multiplizieren?

[ok] Ja, jeweils mit dem konjugiert Komplexen des Nenners erweitern

>
> Und wie komme ich bei 6. auf die Polarform?

Die Polarform lautet ja [mm] $z=r\cdot{}(\cos(\phi)+i\cdot{}\sin(\phi))$, [/mm] wobei $r:=|z|$ und [mm] $\phi=Arg(z)$ [/mm]

$Arg(z)$ kannst du bei den meisten deiner Aufgaben "ablesen", berechnen kannst du es für [mm] $z=x+i\cdot{}y$ [/mm] so: [mm] $\phi=\arctan\left(\frac{y}{x}\right)$ [/mm]  für [mm] $x\neq [/mm] 0$

Für die Umrechnung von Normal- in Polarform (insbesondere die "Spezialfälle" für das Argument) siehe auch hier


>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.
>
>  


Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Mo 25.08.2008
Autor: kushkush

5.
[mm] a)\frac{2}{-3}-\frac{3i}{-3} [/mm]
[mm] b)\frac{25-10i+10i-4i^2}{29}=1 [/mm]
[mm] c)\frac{1}{5}+\frac{2i}{5} [/mm]
[mm] d)\frac{(-5+7i)(4+6i)}{16-36i^2}=\frac{-20-30i+28i+42i^2}{52}=\frac{-i}{26}-\frac{31}{26} [/mm]
[mm] e)\frac{\frac{i}{10}-\frac{7}{10}}{\frac{7i}{5}+\frac{9}{5}}=\frac{1.16i}{5.2}-\frac{1.12}{5.2} [/mm]

richtig so weit?



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mo 25.08.2008
Autor: schachuzipus

Hallo nochmal,

> 5.
>  [mm]a)\frac{2}{-3}-\frac{3i}{-3}[/mm] [notok]
>  [mm]b)\frac{25-10i+10i-4i^2}{29}=1[/mm] [notok]
>  [mm]c)\frac{1}{5}+\frac{2i}{5}[/mm] [notok]

dies ist aber nahe dran, es stimmt ein Vorzeichen nicht

>  
> [mm]d)\frac{(-5+7i)(4+6i)}{16-36i^2}=\frac{-20-30i+28i+42i^2}{52}=\frac{-i}{26}-\frac{31}{26}[/mm] [ok]

>  
> [mm]e)\frac{\frac{i}{10}-\frac{7}{10}}{\frac{7i}{5}+\frac{9}{5}}=\frac{1.16i}{5.2}-\frac{1.12}{5.2}[/mm] [ok]

Stimmt doch, hab's wegen der Rundung nicht direkt erkannt ;-)

[sorry]

>  
> richtig so weit?

Da musst du nochmal nachrechnen ... und vllt. dann auch die ein oder andere vorrechnen, damit wir sehen können, wo es schiefgelaufen ist

>  
>
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.

LG

schachuzipus


Bezug
                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mo 25.08.2008
Autor: kushkush

5.a) [mm] \frac{2-4i-i+2i^2}{-3}-\frac{-5i}{-3} [/mm]
   [mm] b)\frac{(5+2i)(5+2i)}{25-4i^2}=\frac{25+20i-4}{29}=\frac{21}{29}+\frac{20i}{29} [/mm]
   [mm] c)frac{(i)(2+i)}{4+i^2}=\frac{2i}{5}-\frac{1}{5} [/mm]


jetzt aber... (?)  

Bezug
                                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mo 25.08.2008
Autor: schachuzipus

Hallo nochmal,


> 5.a) [mm]\frac{2-4i-i+2i^2}{-3}-\frac{-5i}{-3}[/mm]

Der Nenner stimmt nicht! Wie kommst du darauf?

Es ist doch [mm] $(1+2i)(1-2i)=1^2+2^2=1+4=5$ [/mm]

Der Zähler passt!

>    
> [mm]b)\frac{(5+2i)(5+2i)}{25-4i^2}[/mm]

Hmm, das i hat im Nenner nix verloren, das ist [mm] 5^2+2^2 [/mm]

> [mm]=\frac{25+20i-4}{29}=\frac{21}{29}+\frac{20i}{29}[/mm] [ok]
>     [mm]c)\frac{(i)(2+i)}{4+i^2}[/mm] [notok] [mm]=\frac{2i}{5}-\frac{1}{5}[/mm] [ok]

Ergebnis stimmt, aber der Nenner nicht, da steht ja [mm] 4+i^2=4-1=3 [/mm]

Wenn du ne komplexe Zahl $z=x+iy$ hast und mit dem komplex konjugierten [mm] $\overline{z}=x-iy$ [/mm] multiplizierst, so ist das [mm] $z\cdot{}\overline{z}=x^2+y^2$ [/mm]

Also [mm] Realteil^2 [/mm] + [mm] Imaginärteil^2 [/mm]

>  
>
> jetzt aber... (?)  

Ja, so ziemlich ;-)

LG

schachuzipus


Bezug
                                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Mo 25.08.2008
Autor: kushkush

Dankeschön schachuzipus!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de