www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius bestimmen
Konvergenzradius bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Di 14.09.2010
Autor: ATDT

Aufgabe
Bestimme den Konvergenzradius und das Konvergenzintervall der Potenzreihe

[mm] \summe_{n=0}^{\infty} \bruch{1}{\wurzel{4^n}}*x^n [/mm]

Liebe Helfer,

Bis jetzt bin ich soweit:

L = [mm] \limes_{n\rightarrow\infty} \wurzel[n]{|an|} [/mm]

L = [mm] \limes_{n\rightarrow\infty} \wurzel[n]{\bruch{1}{\wurzel{4^n}}} [/mm]

Und R = [mm] \bruch{1}{L} [/mm]

Ist der Ansatz bis jetzt richtig? und wie mache ich weiter?
Kann man hier die n-te Wurzel ziehen oder nicht?

Ich hoffe Ihr könnt mir helfen
LG ATDT

        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Di 14.09.2010
Autor: angela.h.b.


> Bestimme den Konvergenzradius und das Konvergenzintervall
> der Potenzreihe
>  
> [mm]\summe_{n=0}^{\infty} \bruch{1}{\wurzel{4^n}}*x^n[/mm]
>  Liebe
> Helfer,
>  
> Bis jetzt bin ich soweit:
>  
> L = [mm]\limes_{n\rightarrow\infty} \wurzel[n]{|an|}[/mm]
>  

Hallo,

> L = [mm]\limes_{n\rightarrow\infty} \wurzel[n]{\bruch{1}{\wurzel{4^n}}}[/mm]

=[mm] \limes_{n\rightarrow\infty} \wurzel[n]{(2^{-2n})^{\bruch{1}{2}}} = \limes_{n\rightarrow\infty}[(2^{-2n})^{\bruch{1}{2}}}]^{\bruch{1}{n}}[/mm]

Und???

(Wiederhole, wie man Wurzeln als Potenzen schreiben kann und die Potenzgesetze.)

Gruß v. Angela



>  
> Und R = [mm]\bruch{1}{L}[/mm]
>  
> Ist der Ansatz bis jetzt richtig? und wie mache ich
> weiter?
>  Kann man hier die n-te Wurzel ziehen oder nicht?
>  
> Ich hoffe Ihr könnt mir helfen
>  LG ATDT


Bezug
                
Bezug
Konvergenzradius bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Di 14.09.2010
Autor: ATDT


> Hallo,
>  
> > L = [mm]\limes_{n\rightarrow\infty} \wurzel[n]{\bruch{1}{\wurzel{4^n}}}[/mm]
>  
> =[mm] \limes_{n\rightarrow\infty} \wurzel[n]{(2^{-2n})^{\bruch{1}{2}}} = \limes_{n\rightarrow\infty}[(2^{-2n})^{\bruch{1}{2}}}]^{\bruch{1}{n}}[/mm]
>  
> Und???
>  
> (Wiederhole, wie man Wurzeln als Potenzen schreiben kann
> und die Potenzgesetze.)
>  
> Gruß v. Angela

Hallo Angela,
danke dass du so schnell geantwortet hast.
Wie man eine Wurzel in eine Potenzschreibweise umwandelt habe ich gerade nachgeschaut. Das ist kein Problem mehr aber wie kommt man von L = [mm]\limes_{n\rightarrow\infty} \wurzel[n]{\bruch{1}{\wurzel{4^n}}}[/mm] auf [mm] \limes_{n\rightarrow\infty} \wurzel[n]{(2^{-2n})^{\bruch{1}{2}}} = \limes_{n\rightarrow\infty}[(2^{-2n})^{\bruch{1}{2}}}]^{\bruch{1}{n}}[/mm]

Die Umformung der [mm] \wurzel{4^n} [/mm] zu [mm] (2^{-2n})^\bruch{1}{2} [/mm] kann ich gerade nicht nachvollziehen :-(

Lg ATDT

Bezug
                        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Di 14.09.2010
Autor: XPatrickX

Hallo,

es gilt doch

[mm] 4=2^2 [/mm]
[mm] \sqrt{a}=a^{1/2} [/mm]
[mm] \frac{1}{a}=a^{-1} [/mm]

Und jetzt baue das mal alles zusammen.

Gruß Patrick

Bezug
        
Bezug
Konvergenzradius bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 14.09.2010
Autor: fred97

[mm] $\wurzel{4^n}= (\wurzel{4})^n=2^n$ [/mm]

FRED

Bezug
                
Bezug
Konvergenzradius bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Di 14.09.2010
Autor: angela.h.b.


[mm] > \wurzel{4^n}= (\wurzel{4})^n[/mm]

Irgendwie nicht hast Du wie immer recht...

Gruß v. Angela


Bezug
                        
Bezug
Konvergenzradius bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Di 14.09.2010
Autor: fred97


>
> [mm] > \wurzel{4^n}= (\wurzel{4})^n[/mm]
>  
> Irgendwie nicht hast Du wie immer recht...


Aber nicht doch. Ich irre mich oft

Gruß FRED

>  
> Gruß v. Angela
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de