www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Kurvenschar Ortslinie
Kurvenschar Ortslinie < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar Ortslinie: Berechnung der Ortslinie
Status: (Frage) beantwortet Status 
Datum: 23:14 Di 30.05.2006
Autor: zeusiii

Aufgabe
Berechnen sie die Ortline aller Extrempunkte von f(x)=tx² + x  

Hallo zusammen .

ich weiss das ich die funktion so umstellen muss, dass ich t alleine stehen habe ,nur klappt das nicht so toll .


f ' (x ) = 2 tx + 1    / -1

-1  = 2 t x              / / x

-1/x = 2 t               / *( 1 / 2 )

-1/2x = t

und das setze ich dann in die Ursprungsfunktion ein

f          (x)= (-1/2x)*x² + x
  -1/2x

f           (x) = - 1/2*x³ + x
  -1/2x

aber das ist doch dann nicht die Ortslinie oder?

irgendwas habe ich sicher vergessen in der Schule aieht immer alles so
einfach aus und zu Hause weiss ich dann nicht wie es ging .

freue mich über eine Antwort.






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kurvenschar Ortslinie: Ortslinie berechnnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Di 30.05.2006
Autor: zeusiii

Ich hab es falsch augerechnet .

einsetzten von 1/2x

f(x) = (1/2 x) * x ² + x    /  kürzen 1/2x mit x ²

f (x) = 1/2 x + x


dann ist die Ortslinie

O (x) = 1/2 x + x

aber warum hatten wir in der Schule nur

o (x) = 1/2 x         ?




Bezug
        
Bezug
Kurvenschar Ortslinie: Vorzeichen vergessen
Status: (Antwort) fertig Status 
Datum: 23:30 Di 30.05.2006
Autor: Loddar

Hallo zeusiii!


Der 2. Lösungsansatz sieht schon viel besser aus. Allerdings unterschlägst Du da das Minuszeichen bei $t \ = \ [mm] \red{-}\bruch{1}{2x}$ [/mm] :

[mm] $f\left(\red{-}\bruch{1}{2x}\right) [/mm] \ = \ [mm] \red{-}\bruch{1}{2x}*x^2+x [/mm] \ = \ [mm] \red{-}\bruch{1}{2}*x+1*x [/mm] \ = \ [mm] \red{+}\bruch{1}{2}*x$ [/mm]


Der Vollständigkeit halber sollte man aber auch überprüfen, ob bei [mm] $x_E [/mm] \ = \ [mm] -\bruch{1}{2t}$ [/mm] wirklich ein Extremum vorliegt (einsetzen in 2. Ableitung, hinreichendes Kriterium).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de