www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Mengen von Umkehrfunktion
Mengen von Umkehrfunktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen von Umkehrfunktion: Erklärung
Status: (Frage) beantwortet Status 
Datum: 02:33 Do 04.11.2010
Autor: lexjou

Aufgabe
Bestimme die folgenden Mengen:

[mm] f^{-1}(]0,\infty[), [/mm] mit [mm] f(x):=x^{2}-2x [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein bisschen Probleme bei der Mengenangabe.

Die Umkehrfunktion von [mm] f(x):=x^{2}-2x [/mm] hat meiner Meinung nach 2 Lösungen.

Einmal [mm] f^{-1}(y)=1-\wurzel{y+1} [/mm] und  [mm] f^{-1}(y)=1+\wurzel{y+1} [/mm]

Nun steht ja in der Aufgabenstellung [mm] f^{-1}(]0,\infty[)! [/mm]

Und es gilt doch [mm] f^{-1} \gdwf [/mm] f(x)=y

Heißt das jetzt also, dass ich das angegebene Intervall als Lösungsmenge herausbekommen muss für die x-Werte die ich einsetze oder was bedeutet das genau??

Ich habe erstmal geschrieben:

[mm] f^{-1}(]0,\infty[):={f(x)|x\in\IR, x\ge0} [/mm]

Wäre das die korrekte Mengenangabe?

Danke für eure Hilfe!



        
Bezug
Mengen von Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Do 04.11.2010
Autor: Sax

Hi,

> Bestimme die folgenden Mengen:
>  
> [mm]f^{-1}(]0,\infty[),[/mm] mit [mm]f(x):=x^{2}-2x[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe ein bisschen Probleme bei der Mengenangabe.
>  
> Die Umkehrfunktion von [mm]f(x):=x^{2}-2x[/mm] hat meiner Meinung
> nach 2 Lösungen.

1. Das Wort "Lösung" ist eigentlich für Gleichungen reserviert, es steht aber keine da.
2. Die Umkehrung von f mit f(x) = [mm] x^2-2x [/mm]  ist keine Funktion, denn sowohl (8|4) als auch (8|-2) gehören zur Umkehrung, also keine Rechtseindeutigkeit.

>  
> Einmal [mm]f^{-1}(y)=1-\wurzel{y+1}[/mm] und  
> [mm]f^{-1}(y)=1+\wurzel{y+1}[/mm]

>

Diese zwei Funktionen stellen in der Tat die zwei Äste der Umkehrung dar.
  

> Nun steht ja in der Aufgabenstellung [mm]f^{-1}(]0,\infty[)![/mm]
>  
> Und es gilt doch [mm]f^{-1} \gdwf[/mm] f(x)=y

>

3. Vermutlich ist  [mm] f^{-1}(y) [/mm] = x  [mm] \gdw [/mm]  f(x) = y  gemeint.  
Diese Zeile ist richtig, wenn es sich bei [mm] f^{-1} [/mm] um eine Funktion handelt.

> Heißt das jetzt also, dass ich das angegebene Intervall
> als Lösungsmenge herausbekommen muss für die x-Werte die
> ich einsetze oder was bedeutet das genau??
>  

4. Genau das heißt es. Gesucht sind alle x-Werte, deren f(x)-Werte in dem angegebenen Intervall liegen. Mit [mm] f^{-1}(B) [/mm] ist eine Menge gemeint (siehe Überschrift der Aufgabe), nämlich die Menge A all derjenigen x-Werte, deren f(x)-Werte in B liegen.

> Ich habe erstmal geschrieben:
>  
> [mm]f^{-1}(]0,\infty[):={f(x)|x\in\IR, x\ge0}[/mm]
>  

5. Es muss also gerade anders herum sein :
[mm] f^{-1}(]0;\infty[) [/mm] = {x [mm] \in\IR [/mm] | f(x) > 0}

Diese Menge muss jetzt noch z.B. in Intervallschreibweise angegeben werde, ohne dass "f" als Symbol in der Lösung auftaucht.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de