www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Minimalpolynom ermitteln
Minimalpolynom ermitteln < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Mo 24.05.2010
Autor: Lyrn

Aufgabe
Berechne das Minimalpolynom von [mm] A=\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2} [/mm]

Hallo,
ansich weiß ich wie das geht, aber ich komme auf eine komische Lösung. Daher wäre es nett wenn mir wer sagt was ich falsch gemacht habe.

1. Char Polynom: [mm]-t^{3}-6t^{2}-9t=-t(t+3)^{2}[/mm]
2. Eigenwerte: 0 und -3
3. Mögliche Minimalpolynome: [mm]-t(t+3)^{2}[/mm] oder [mm]-t(t+3)[/mm]
4. A einsetzen:

in [mm]-t(t+3)^{2}[/mm]

[mm]-\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2}(\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2}+3)^{2}=\pmat{ 18 & -9 & -9 \\ -9 & 18 & -9 \\ -9 & -9 & 18}[/mm]


in [mm]-t(t+3)[/mm]

[mm]-\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2}(\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2}+3)=\pmat{ -6 & 3 & 3 \\ 3 & -6 & 3 \\ 3 & 3 & -6}[/mm]


Eigentlich müsste ja jetzt die Nullmatrix entstehen. Heißt das jetzt dass es kein Minimalpolynom gibt? Eigentlich muss es aber eins geben, weil die Aufgabe ja extra so gestellt ist.
Und noch was komisches:
Wenn ich [mm] \pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2} [/mm] in [mm]-t^{3}-6t^{2}-9t[/mm] einsetze bekomme ich die Nullmatrix heraus. Dabei ist doch [mm]-t^{3}-6t^{2}-9t=-t(t+3)^{2}[/mm]. Warum bekomme ich also bei [mm]-t(t+3)^{2}[/mm] keine Nullmatrix?

        
Bezug
Minimalpolynom ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Mo 24.05.2010
Autor: ChopSuey

Hallo,

> Berechne das Minimalpolynom von [mm]A=\pmat{ -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2}[/mm]
>  
> Hallo,
>  ansich weiß ich wie das geht, aber ich komme auf eine
> komische Lösung. Daher wäre es nett wenn mir wer sagt was
> ich falsch gemacht habe.
>  
> 1. Char Polynom: [mm]-t^{3}-6t^{2}-9t=-t(t+3)^{2}[/mm]
>  2. Eigenwerte: 0 und 2

Nein. Das char. Polynom kann nicht stimmen.

Es ist $\ [mm] P_A(t) [/mm] = [mm] \det(A-t*E) [/mm] $

Dort liegt der Hund begraben.


Grüße
ChopSuey

Bezug
                
Bezug
Minimalpolynom ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:13 Mo 24.05.2010
Autor: Lyrn

Eigentlich müsste es stimmen.
Wie soll es denn sonst lauten?

Hab es auch nochmal in []Wolfram Alpha überprüft.

Bezug
                        
Bezug
Minimalpolynom ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 02:03 Mo 24.05.2010
Autor: Sigma

Hallo Lyrn,

dein charakteristisches Polynom stimmt und ich komme bei beiden Varianten
$ [mm] -t^{3}-6t^{2}-9t [/mm] $ und $ -t(t+3 I [mm] )^{2} [/mm] $ auf die Nullmatrix. Du solltest nochmal die Matrizenoperationen üben. Dann hast du aber immer noch nicht das Minimalpolynom gefunden. Lies dir []das noch mal durch.

mfg sigma

Bezug
                                
Bezug
Minimalpolynom ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:21 Mo 24.05.2010
Autor: Lyrn

Meinst du, dass es normiert sein muss? Also $ t(t+3 I [mm] )^{2} [/mm] $




Bezug
                                        
Bezug
Minimalpolynom ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 02:28 Mo 24.05.2010
Autor: Sigma

Ja,

aber da fehlt immer noch was. Stichwort "smallest degree n".

gruß sigma

Bezug
        
Bezug
Minimalpolynom ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 02:12 Mo 24.05.2010
Autor: tobit09

Hallo Lyrn,

offensichtlich hast du beim Einsetzen in die faktorisierten Polynome den konstanten Term 3 falsch interpretiert:

Er steht für [mm] $3*t^0$, [/mm] so dass du beim Einsetzen von A gerade [mm] $3*A^0=3*\pmat{1&0&0\\0&1&0\\0&0&1}=\pmat{3&0&0\\0&3&0\\0&0&3}$ [/mm] und nicht [mm] $\pmat{3&3&3\\3&3&3\\3&3&3}$ [/mm] erhältst.

Viele Grüße
Tobias

Bezug
                
Bezug
Minimalpolynom ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:18 Mo 24.05.2010
Autor: Lyrn

Ah, da lag mein Fehler, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de