www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Monotonieverhalten untersuchen
Monotonieverhalten untersuchen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonieverhalten untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Do 06.11.2008
Autor: Steppenwolf.

Aufgabe
Untersuchen Sie das Monotonieverhalten der Fkt. [mm] f_{a}(t)=a*t*e^{-0,25t} [/mm] in Abhängigkeit von a.

Hallo,

hab diese Aufgabe bekommen und weiß leider nicht mehr, wie ich Monotonieverhalten berechnen kann...und vorallem nicht, wie das bei dieser Schar geht, würde mich daher sehr über Hilfe freuen.

Lieber Gruß,

Steppenwolf.

        
Bezug
Monotonieverhalten untersuchen: Ableitung bestimmen
Status: (Antwort) fertig Status 
Datum: 21:03 Do 06.11.2008
Autor: Loddar

Hallo Steppenwolf!


Die Monotonie kannst Du über die 1. Ableitung (= Steigungsfunktion) ermitteln. Es gilt:
$$f'(x) \ < \ 0 \ \ \ \ [mm] \gdw [/mm] \ \ \ \ f \ [mm] \text{ist monoton fallend}$$ [/mm]
$$f'(x) \ > \ 0 \ \ \ \ [mm] \gdw [/mm] \ \ \ \ f \ [mm] \text{ist monoton steigend}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Monotonieverhalten untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Do 06.11.2008
Autor: Steppenwolf.

Ah, ok, alles klar - bin mir noch nicht sicher, ob ich genau verstanden habe, warum das so ist...ich überleg nochmal ;)

Hab schonmal die 1. Ableitung bestimmt:

[mm] f_{a}'(t) [/mm] = [mm] a[(1-0,25t)*e^{-0,25t}] [/mm]

So, wie krieg ich das denn jetzt hin, also wie entscheid ich in Abhängigkeit von a wann das fällt, bzw. wann es kleiner 0 ist??

Danke + vg

Steppenwolf.

Bezug
                        
Bezug
Monotonieverhalten untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Do 06.11.2008
Autor: schachuzipus

Hallo Steppenwolf.,

> Ah, ok, alles klar - bin mir noch nicht sicher, ob ich
> genau verstanden habe, warum das so ist...ich überleg
> nochmal ;)
>  
> Hab schonmal die 1. Ableitung bestimmt:
>  
> [mm]f_{a}'(t)[/mm] = [mm]a[(1-0,25t)*e^{-0,25t}][/mm] [ok]

Das ist ein bisschen verschachtelt, nehmen wir zuerst mal den "blöden" Fall a=0 raus, für a=0 hättest du [mm] $f_0(t)=0$, [/mm] das wäre die konstante Nullfunktion

Nehmen wir nun also für die weitere Überlegung [mm] $a\neq [/mm] 0$ an

Schaue dir zuerst das Produkt [mm] $(1-0,25t)\cdot{}e^{-0,25t}$ [/mm] an

Der hintere Faktor [mm] $e^{-0,25t}$ [/mm] ist für jedes t sicher größer als Null

Der Faktor $1-0,25t$ ist in Abhängigkeit von t größergleich oder kleiner als Null

Für [mm] $t\le [/mm] 4$ ist [mm] $1-0,25t\ge [/mm] 0$ (nachrechnen)

Damit wäre dann [mm] $\underbrace{(1-0,25t)}_{\ge 0}\cdot{}\underbrace{e^{-0,25t}}_{> 0} [/mm] \ [mm] \ge [/mm] 0$

Also nehmen wir den Faktor a noch hinzu:

1.Fall (A): $a \ > \ 0$ und [mm] $t\le [/mm] 4$

Dann ist [mm] $\underbrace{a}_{>0}\cdot{}\underbrace{(1-0,25t)}_{\ge 0}\cdot{}\underbrace{e^{-0,25t}}_{>0} [/mm] \ [mm] \ge [/mm] 0$

Also monoton wachsend auf dem Intervall [mm] $(-\infty,4]$ [/mm] für $a>0$

Nun mach du mal weiter 1.Fall (B): $a \ < \ 0$ und [mm] $t\le [/mm] 4$

Wie sieht dann das Produkt und die Vorzeichenverteilung aus?

Dann musst du dir die Chose noch für die $t>4$ anschauen, im 1. Fall hatten wir [mm] $t\le [/mm] 4$, also [mm] $t\in(-\infty,4]$ [/mm]

wieder mit 2 Unterfällen für a ...

Fall 2.A: $a>0$ und $t>4$

Fall 2.B: $a<0$ und $t>4$



>  
> So, wie krieg ich das denn jetzt hin, also wie entscheid
> ich in Abhängigkeit von a wann das fällt, bzw. wann es
> kleiner 0 ist??
>  
> Danke + vg
>  
> Steppenwolf.


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de