www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Nachweis eines Ereignisfeldes
Nachweis eines Ereignisfeldes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis eines Ereignisfeldes: Omega' < Omega is auch ein Ere
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 29.10.2010
Autor: wwfsdfsdf2

Aufgabe
Sei F ein Ereignisfeld in [mm] \Omega [/mm] und [mm] \Omega' \subset \Omega. [/mm]

Zeigen Sie, dass F' = [mm] \Omega' \cap [/mm] F = [mm] \{ \Omega' \cap A | A \in F \} [/mm]

ein Ereignisfeld ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Solange das Komplement in [mm] \Omega' [/mm] gebildet wird, ist es klar, dass F' ein Ereignisfeld ist - aber ich habe keine Ahnung, wie das Formal zu zeigen ist?!

danke

        
Bezug
Nachweis eines Ereignisfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 29.10.2010
Autor: Gonozal_IX

Huhu,

eins Vorweg: Anstatt "Ereignisfeld" benutz ich mal den gebräuchlicheren Begriff " [mm] $\sigma$-Algebra$". [/mm]


> Solange das Komplement in [mm]\Omega'[/mm] gebildet wird,

wird es

> ist es
> klar, dass F' ein Ereignisfeld ist - aber ich habe keine
> Ahnung, wie das Formal zu zeigen ist?!

Du musst halt zeigen, dass das Komplement von $A' = [mm] \Omega' \cap [/mm] A$ bezüglich [mm] \Omega' [/mm] wieder in [mm] \mathcal{F'} [/mm] liegt, d.h. sich als [mm] $\Omega' \cap [/mm] B$ darstellen lässt für ein $B [mm] \in \mathcal{F}$ [/mm]

Letztlich ist es einfach, wenn man benutzt, dass für zwei Mengen X und Y gilt: [mm] $X\setminus [/mm] Y = X [mm] \cap Y^c$. [/mm]

Nun bilde mal das Komplement von A' bzgl [mm] \Omega', [/mm] dann stehts eigentlich schon da.....

MFG,
Gono.

Bezug
                
Bezug
Nachweis eines Ereignisfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 29.10.2010
Autor: wwfsdfsdf2

Das Komplement von A' bzgl [mm] \Omega' [/mm] ist ja A'^c [mm] \cap \Omega', [/mm] damit ist es auch in [mm] \Omega' [/mm] enthalten. Aber wie rechtfertige ich den Schnitt mit [mm] \Omega', [/mm] also, dass ich das Komplement in [mm] \Omega' [/mm] bilde und nicht in [mm] \Omega [/mm] selbst ?!


[mm] (\Omega' \cap A)^c [/mm] wäre [mm] \Omega'^c \cup A^c. [/mm] Da [mm] \Omega'^c [/mm] = {} für das Komplement in [mm] \Omega', [/mm] ist also das Ergebnis [mm] A^c [/mm] - womit ich aber imo noch immer nicht bewiesen habe, dass es in [mm] \Omega' [/mm] liegt?!....

Bezug
                        
Bezug
Nachweis eines Ereignisfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Fr 29.10.2010
Autor: Gonozal_IX


> Aber wie
> rechtfertige ich den Schnitt mit [mm]\Omega',[/mm] also, dass ich
> das Komplement in [mm]\Omega'[/mm] bilde und nicht in [mm]\Omega[/mm] selbst
> ?!

Damit, dass die Aufgabe unsauber gestellt ist ;-)

z.z. ist nämlich, dass [mm] \mathcal{F'} [/mm] eine [mm] $\sigma$-Algebra [/mm] auf [mm] \Omega' [/mm] ist, d.h. es muss gelten:

$A [mm] \in \mathcal{F'} \Rightarrow \Omega'\setminus [/mm] A [mm] \in \mathcal{F'}$ [/mm]

[mm] \mathcal{F'} [/mm] ist im Allgemeinen auch gar keine [mm] $\sigma$-Algebra [/mm] auf [mm] \Omega, [/mm] sonsofern kannst du das gar nicht zeigen.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de