www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Nullstellenberechnung
Nullstellenberechnung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Regeln?
Status: (Frage) beantwortet Status 
Datum: 19:59 Do 05.07.2007
Autor: Max80

Hallo zusammen!

Ich habe hier folgendes Polynom:

[mm] \bruch{1}{8}*x^4 [/mm] - [mm] x^3 [/mm] + [mm] \bruch{9}{4}*x^2 [/mm]

nun wollte ich die nullstellen berechnen!
also erstmal x ausgeklammert:

[mm] x(\bruch{1}{8}*x^3 [/mm] - [mm] x^2 [/mm] + [mm] \bruch{9}{4}*x) [/mm]

demnach ist die erste NS = 0?!

nächste! damit ich die polynomdivison machen muss, muss ich eine erraten. ich depp hab zuerst 1 und -1 versucht bis ich gecheckt habe, dass es wieder =0 ist! zweite NS!

nun machte ich die polynomdivision (durch x-0) und kam auf:
[mm] \bruch{1}{8}*x^2 [/mm] - x + [mm] \bruch{9}{4} [/mm]

ist das richtig so? rein polynomdivisionstechnisch... =)

sooo. jetzt habe ich es mit der pq-formel versucht. erstmal die gleichung mit 8 multipliziert. da stoße ich unter der kurzel auf einen negativen wert. und jetzt??

ich hab da noch ne andere vermutung: kann es sein, dass die nullstellen auch davon abhängig sind, ob nen konstanten wert (also OHNE ein x) im polynom habe???
irgendwie ist an der sache was faul =)


danke!!

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Do 05.07.2007
Autor: barsch

Hi,

erst einmal


> [mm] \bruch{1}{8}*x^4 [/mm] - [mm] x^3+\bruch{9}{4}*x^2 [/mm]

[mm] =x^2*(\bruch{1}{8}*x^2-x+\bruch{9}{4}) [/mm]

Wenn du gleich [mm] x^2 [/mm] rausziehst, brauchst du keine Polynomdivision mehr machen.

mhhh... pq-formel haut bei mir auch nicht hin. sorry.

MfG

barsch

Bezug
        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Do 05.07.2007
Autor: Analytiker

Hi Bunti,
Hi Barsch,

wie ihr ja schon völlig richtig herausgefunden habt, kann man [mm] x^{2} [/mm] ausklammern! Somit ergbit sich für die ersten Nullstellen: [mm] x_{1} [/mm] = 0 und [mm] x_{2} [/mm] = 0 !

Somit bleibt folgende quadratische Funktion über:

f(x) = [mm] \bruch{1}{8}x^{2} [/mm] - x + [mm] \bruch{9}{4} [/mm]

Nun z.B. mit der p/q-Formel wie bereits angesprochen lösen:

0 = f(x) = [mm] \bruch{1}{8}x^{2} [/mm] - x + [mm] \bruch{9}{4} [/mm] | * 8 -> 0 = f(x) = [mm] x^{2} [/mm] - 8x + 18
-> 0 = 4 [mm] \pm \wurzel{16 - 18} [/mm] -> da hier ein negativer Wert unter der Klammer entsteht, hat diese Gleichung keine Lösung. Das bedeutet keine weitere Nullstellen!

Das heißt, die Funktion f(x) =  [mm] \bruch{1}{8}x^{4} [/mm] - [mm] x^{3} [/mm] + [mm] \bruch{9}{4}x^{2} [/mm] hat eine dopellte Nullstelle bei x = 0 !

Liebe Grüße
Analytiker
[lehrer]




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de