www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Partielle Integration
Partielle Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:28 Fr 28.05.2010
Autor: Semimathematiker

Aufgabe
Integrieren Sie mit Hilfe der P.I.

[mm] \integral{e^{\bruch{x}{2}}sinx dx} [/mm]

Ich habe es mit der Partiellen Integration versucht aber es dreht sich im Kreis.

[mm] \integral{f´(x)g(x)dx} [/mm] = [f(x)g(x)] - [mm] \integral{f(x)g´(x)dx} [/mm]

Sei [mm] e^{\bruch{x}{2}} [/mm] = [mm] v^{\bruch{1}{2}} [/mm]
dann: [mm] (v^{\bruch{1}{2}})´ [/mm] = [mm] \bruch{v^{-\bruch{1}{2}}}{2}dv [/mm] = [mm] \bruch{dv}{2v^{\bruch{1}{2}}} [/mm]

[mm] (R.subst)\Rightarrow \bruch{e^{x}}{2(e^{x})^{\bruch{1}{2}}} [/mm] = [mm] \bruch{e^{\bruch{2}{2}x}}{2(e^{x})^{\bruch{1}{2}}} [/mm] = [mm] \bruch{e^{\bruch{1}{2}x}}{2} [/mm]

wenn ich das jetzt verwende, komme ich auf:

= [mm] [-chos(x)e^{\bruch{x}{2}}] [/mm] + [mm] \bruch{1}{2}\integral{-cos(x)e^\bruch{x}{2}dx} [/mm]

Den Sinx abzuleiten führt genauso im Kreis herum. Habe ich irgendwo einen  Fehler?

Grüße
SM

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Fr 28.05.2010
Autor: schachuzipus

Hallo Semimathematiker,

> Integrieren Sie mit Hilfe der P.I.
>  
> [mm]\integral{e^{\bruch{x}{2}}sinx dx}[/mm]
>  Ich habe es mit der
> Partiellen Integration versucht aber es dreht sich im
> Kreis.
>
> [mm]\integral{f´(x)g(x)dx}[/mm] = [f(x)g(x)] -
> [mm]\integral{f(x)g´(x)dx}[/mm]
>  
> Sei [mm]e^{\bruch{x}{2}}[/mm] = [mm]v^{\bruch{1}{2}}[/mm]
>  dann: [mm](v^{\bruch{1}{2}})´[/mm] =
> [mm]\bruch{v^{-\bruch{1}{2}}}{2}dv[/mm] =
> [mm]\bruch{dv}{2v^{\bruch{1}{2}}}[/mm]
>  
> [mm](R.subst)\Rightarrow \bruch{e^{x}}{2(e^{x})^{\bruch{1}{2}}}[/mm]
> = [mm]\bruch{e^{\bruch{2}{2}x}}{2(e^{x})^{\bruch{1}{2}}}[/mm] =
> [mm]\bruch{e^{\bruch{1}{2}x}}{2}[/mm]
>  
> wenn ich das jetzt verwende, komme ich auf:
>  
> = [mm][-chos(x)e^{\bruch{x}{2}}][/mm] +
> [mm]\bruch{1}{2}\integral{-cos(x)e^\bruch{x}{2}dx}[/mm]
>  
> Den Sinx abzuleiten führt genauso im Kreis herum. Habe ich
> irgendwo einen  Fehler?

Es ist [mm] $\int{f'g}=fg-\int{fg'}$ [/mm]

Hier [mm] $\int{\underbrace{\sin(x)}_{f'(x)} \ \cdot{} \ \underbrace{e^{\frac{x}{2}}}_{g(x)} \ dx}=-\cos(x)\cdot{}e^{\frac{x}{2}} [/mm] \ - \ [mm] \int{-\cos(x)\cdot{}\frac{1}{2}e^{\frac{x}{2}} \ dx}$ [/mm]

[mm] $=-\cos(x)e^{\frac{x}{2}}+\frac{1}{2}\int{\cos(x)\cdot{}e^{\frac{x}{2}} \ dx}$ [/mm]

Nun auf das hintere Integral nochmal mit partieller Integration los mit [mm] $f'(x)=\cos(x)$ [/mm] und [mm] $g(x)=e^{\frac{x}{2}}$ [/mm]

Dann bekommst du wieder das Ausgangsintegral (bzw. ein Vielfaches) und kannst die Gleichung nach dem Integral umstellen ...

Gruß

schachuzipus

>  
> Grüße
>  SM


Bezug
                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Fr 28.05.2010
Autor: Semimathematiker

Sorry, ich hab mich da etwas verschrieben und es beim durchlesen nicht gemerkt.
So habe ich die ´ bei der Regel vergessen und beim letzten Integral -1/2 vorgezogen aber nochmals ein "-" vor den Kosinus gesetzt....

Danke für den Tipp. Ich habe die linke Seite der Gleichung nicht mitgeschrieben....

Ich komme jetzt auf:

[mm] \integral{sin(x)e^\bruch{x}{2}dx} [/mm] = [mm] \bruch{2e^\bruch{x}{2}}{5} [/mm] (-2cos(x)+sin(x))

Werde es nach dem Essen schnell differenzieren um zu sehen ob´s passt. Aber wenn ich´s überschlage...schaut´s schlecht aus.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de