www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Punkt der Kurventangente ges.
Punkt der Kurventangente ges. < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt der Kurventangente ges.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 07.02.2011
Autor: Foszwoelf

Aufgabe
f(x)= [mm] 2x^3+5x^2+4x+1 [/mm]

gesucht sind Punkte an denen die Kurventangente mit der x-Achse einen Winkel von 45° bildet.

Ich weiß f´(x)= Tan alpha                      aber wie weiter ?????

        
Bezug
Punkt der Kurventangente ges.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 07.02.2011
Autor: kamaleonti

Hallo,
> f(x)= [mm]2x^3+5x^2+4x+1[/mm]
>  gesucht sind Punkte an denen die Kurventangente mit der

Ich gehe davon aus, dass der von zwei Geraden eingeschlossene Winkel stets der kleinere an der Schnittstelle ist. Dann gibt es für 45° zwei Moeglichkeiten:
a) die Tangente hat Anstieg 1
b) die Tangente hat Anstieg -1

>  
> Ich weiß f´(x)= Tan alpha                      aber wie
> weiter ?????

obige Anstiege sind gerade die Tangenswerte von [mm] \frac{\pi}{4} [/mm] bzw. 45° und [mm] \frac{3\pi}{4} [/mm] bzw. 135°.

Also berechnest du die Loesungen der beiden Gleichungen [mm] f'(x)=\pm [/mm] 1

Kamaleonti

Bezug
                
Bezug
Punkt der Kurventangente ges.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 07.02.2011
Autor: Foszwoelf

hab nichts kapiert sorry viel zu kompliziert erklärt !!!

Bezug
                        
Bezug
Punkt der Kurventangente ges.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 07.02.2011
Autor: fred97

Zeichne mal eine Gerade, die die x - Achse im Winkel von 45° schneidet.

Wenn diese Gerade eine positive Steigung hat, welche Steigung hat sie dann ?

Wenn diese Gerade eine negative Steigung hat, welche Steigung hat sie dann ?

FRED

Bezug
                                
Bezug
Punkt der Kurventangente ges.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 07.02.2011
Autor: Foszwoelf

ah 1 oder -1 !!!

Aber wie wurde ich die aufgabe rechnen wenn zum beispiel ein Winkel von 67° gegeben wäre ??

Bezug
                                        
Bezug
Punkt der Kurventangente ges.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mo 07.02.2011
Autor: kamaleonti

Hallo Foszwoelf,

dann musst du die Gleichungen
a) f'(x)=tan(67°)
b) f'(x)=tan(180°-67°)=tan(113°)
loesen.
Das folgt aus der Eigenschaft, die du bei deinem ersten Post angegeben hast: [mm] f'(x)=\tan(\alpha) [/mm]

Gruß,
Kamaleonti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de