www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Rechtwinckligkeit Flächeninhal
Rechtwinckligkeit Flächeninhal < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtwinckligkeit Flächeninhal: Ansätze aber weiter auch nix
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 06.05.2008
Autor: Julia1988

Aufgabe
Der Punkt P3 (3/1/6) liegt auf der Geraden g. Die Punkte P1P2P3 bilden ein Dreieck. Untersuche, ob das Dreieck rechtwincklig ist und bestimme seinen Flächeninhalt.
g: x= (1/1/2)+ r * (1/0/2), P1(2/1/0) P2(-4/7/3)

Ich habe die Seitenlängen berechnet. P1P3= 6,08 P1P2= 9 P2P3= 9,695.
Jetzt weiß ich aber überhaupt nicht was ich als nächstes machen soll.

        
Bezug
Rechtwinckligkeit Flächeninhal: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 06.05.2008
Autor: Bastiane

Hallo Julia1988!

> Der Punkt P3 (3/1/6) liegt auf der Geraden g. Die Punkte
> P1P2P3 bilden ein Dreieck. Untersuche, ob das Dreieck
> rechtwincklig ist und bestimme seinen Flächeninhalt.
>  g: x= (1/1/2)+ r * (1/0/2), P1(2/1/0) P2(-4/7/3)
>  Ich habe die Seitenlängen berechnet. P1P3= 6,08 P1P2= 9
> P2P3= 9,695.
>  Jetzt weiß ich aber überhaupt nicht was ich als nächstes
> machen soll.

Die Seitenlängen brauchst du gar nicht. Erinnere dich: zwei Vektoren stehen senkrecht aufeinander, wenn ihr Skalarprodukt =0 ist. Du kannst also jede Seite des Dreiecks als Vektor auffassen (so hast du wahrscheinlich dann auch die Seitenlängen berechnet) und ihr Skalarprodukt berechnen.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Rechtwinckligkeit Flächeninhal: komische ergebnisse
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 06.05.2008
Autor: Julia1988

Aufgabe
siehe oben

also für die skalarprodukte habe ich folgendes raus:P1P2 und P1P3 = 12
P1P2 und P2P3 = -69
P1P3 und P2P3 = 25
was sagt mir das oder was muss ich jetzt tun?

Bezug
                        
Bezug
Rechtwinckligkeit Flächeninhal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 06.05.2008
Autor: Martinius

Hallo Julia,

Du hast richtig gerechnet. Wenn Du noch das Skalarprodukt

[mm] $\overrightarrow{P_1P_2}*\overrightarrow{P_1P_3}=12$ [/mm]

hinzunimmst, dann weißt Du, dass keines der Skalarprodukte 0 ergibt, also keiner der 3 Vektoren auf dem anderen senkrecht steht. Das Dreieck ist also nicht rechtwinklig.


Jetzt musst Du noch den Flächeninhalt berechnen.

LG, Martinius


P.S.:

Zur Kontrolle: der Flächeninhalt ist die Hälfte des Betrages des Kreuzproduktes zweier Dreiecksseiten:

[mm] $A=\bruch{1}{2}*|\overrightarrow{P_1P_2}\times\overrightarrow{P_1P_3}|=\bruch{1}{2}*\left|\begin{pmatrix} -6 \\ 6 \\ 3 \end{pmatrix}\times \begin{pmatrix} 1 \\ 0 \\ 6 \end{pmatrix} \right|=\bruch{1}{2}*\left|\begin{pmatrix} 36 \\ 39 \\ -6 \end{pmatrix} \right|=26,7067$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de