www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Regressionspolynome
Regressionspolynome < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regressionspolynome: Idee
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 25.01.2007
Autor: Pit_Agoras

Aufgabe
Für eine Punktmenge und vorzugebende Teilintervalle sollen nach der
Quadratmittelmethode Regressionspolynome vom Grad 4 gebildet werden. Die Gesamtfunktion soll 1-mal stetig diff.b. sein, das Fehlerverhalten soll
an Beispielen untersucht werden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
habe diese Aufgabestellung bekommen und soll sie nun in Matlab, oder Maple umsetzen und mit diversen Tests belegen. Vielleicht hat jemand eine Idee für Ansätze. Ich brüte schon seit Wochen über diversen Numerik Skripten, aber bisher nur mit sehr geringem Erfolg...

        
Bezug
Regressionspolynome: Klärung Rückfragen
Status: (Antwort) fertig Status 
Datum: 10:57 Fr 26.01.2007
Autor: mathemaduenn

Hallo   Pit_Agoras,
[willkommenmr]
Wie ein Polynom 4.Grades aussieht weißt Du sicherlich.
Weißt Du wie man Regression auf einem Intervall machen würde?
Was genau ist unklar?
Wenn ich Dich richtig verstanden habe hast Du Teilintervalle auf denen mehrere Funktionswerte gegeben sind und über diesen Teilintervallen soll es ein Polynom vierten Grades als Ansatz verwendet werden. Das gesamte Gebilde soll dann ähnlich zu Splines stetig diffbar sein. Interessanter Ansatz habe ich noch nicht gesehen. Woher stammt die Aufgabe?
viele Grüße
mathemaduenn


Bezug
                
Bezug
Regressionspolynome: Antwort Rückfragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Fr 26.01.2007
Autor: Pit_Agoras

Das Problem ist das eben nichts gegeben ist ausser dem was ich als Aufgabenstellung bekommen habe. Lösen könnte man das z.B. auch über splines, da die Aufgabenstellung sehr "unkonkret" ist.
Die Unklarheit liegt meinerseits darin dass ich aus einer Punktmenge ein Ausgleichspolynom 4. Gades bekomme, allerdings die Unterteilung in Intervalle weggelassen habe...

Die Aufgabe stammt von unserem Numerik Dozenten, der gerne mal triviale Dinge in komplizierte Sätze verpackt...

Viele Grüße
Pit_Agoras


Bezug
        
Bezug
Regressionspolynome: Ansatz
Status: (Antwort) fertig Status 
Datum: 16:21 Fr 26.01.2007
Autor: mathemaduenn

Hallo nochmal,
Ich nehme mal an das ich die Aufgabe so richtig interpretiere:
Du hast z.B. 3 Intervalle [0,1);[1,2);[2,3] dazu hast Du jede Menge Funktionswerte(Also nicht nur wie bei Splines an den Stellen 0,1,2,3 sondern z.B. auch bei 0,5;1,5;0,3728947 usw. eigentlich egal wo genau. Auf diesen Intervallen sollen nun lokal Polynome 4. Grades angesetzt werden. Diese sollen stetig differenzierbar ineinander übergehen.
Da brauchst du erstmal einen sinnvollen Ansatz für die Regressionsfunktion.
Dazu würde ich lokal Polynome aus den Funktionswerten am Intervallrand sowie den 1.Ableitungen am Intervallrand konstruieren und 1 frei wählen.(Polynom 4.Grades 5 freie Parameter) Diese Parameter wären insofern geschickt gewählt das man fürs Nachbarpolynom entsprechend die gleichen Parameter wählen kann.
Mal Geraden als Bsp.:
f(x)= a*(x-1) +b*x
g(x)=b*x+c*(x-1)
würde jetzt an der Stelle 1 stetig ineinander übergehen, egal was Du für a,b,c wählst.
Für die so stückweise definierte Funktion könntest Du dann "ganz normal" Regression (bzgl. der Parameter a,b,c) machen.
grüße
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de