www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Schiffeversenken
Schiffeversenken < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schiffeversenken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Di 06.06.2006
Autor: snoochy

Aufgabe
Lisa und Frerk spielen "Schiffeversenken"(Quadratisches Hunderterfeld, die Spalten sind mit den Buchstaben A-K versehen ohne J, Die Zeilen haben die Ziffern 1-10). Frerk hat seine Schiffe nach dem folgendem Muster verteilt (B2-F2, E5-G5, G7-H7, H9-K9, I2-I3, C5-C8, A8-A9). Lisa überlegt sich: "Frerk wird seine Schiffe eher in die Mitte als an den rand platziert haben. Deshalb werde ich folgende Strategie anwenden: Auf ein Randfeld (wagerechte Reihen 1 und 10 und senkrechte Reihen A und K) werde ich nur mit der Hälfte der Wahrscheinlichkeit zielen, mit der ich auf die restlichen Felder ziele"

a. mit welcher Wahrscheinlichkeit zielt Lisa auf ein Koordinaten (Xn) mit X Element {A,...,k} und n Element {1,...,10}?
b. Wie groß ist die Wahrscheinlichkeit, dass Lisa beim ersten Schuss den "Fünfer" erwischt?
c. Bei einem Treffer darf man einn weiteren Schuss abgeben. Wie groß ist die Wahrscheinlichkeit, dass Lisa, wenn sie anfängt, gleich einen "Zweier" versenkt?  

Hat jemand Lust mir zu helfen. Finde irgendwie keinen Ansatz für die Aufgaben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schiffeversenken: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 06.06.2006
Autor: M.Rex

Hallo,

Nun, das Spielfeld ist ein Hunderterfeld, also ist die Wahrscheinlichkeit, dass man auf ein Feld schiesst, genau [mm] \bruch{1}{100} [/mm] = 1%.

Das ist dann auch die Lösung für a).

b) Da der 5er genau auf fünf (wie der Name schon sagt) Feldern liegt, sind fünf Felder günstig. An der Ausgangslage mit 100 Feldern ändert sich nichts.
Also ist die Gesuchte W.-keit [mm] \bruch{5}{100} [/mm] = [mm] \bruch{1}{20} [/mm] = 5%.

c) Die Wahrschenlichkeit, den Zweier im ersten Schuss überhaupt zu treffen ist [mm] \bruch{2}{100} [/mm] = [mm] \bruch{1}{50} [/mm] = (Erklärung siehe oben).
Jetzt bleiben noch vier Felder neben dem ersten Treffer übrig, auf denen der Zweier liegt (Diagonal geht nicht, also oberhalb, links, rechst und unterhalb des Treffers). Die W.-keit, das richtige mit dem Boot zu treffen ist also [mm] \bruch{1}{4}. [/mm] Jezt muss man beide W.-keiten ("Erster Schuss überhaupt ein Treffer" und "zweiter Schuss Versenkt das Boot") nur noch multiplizieren, und erhält die gesuchte W.-keit von c).
Also [mm] \bruch{1}{50} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{200} [/mm] = 0,5%.

Ich hoffe, das hilft weiter.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de