www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Schwierige Grenzwertberechnung
Schwierige Grenzwertberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwierige Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 07.05.2009
Autor: Denny22

[mm] $\varphi\in]-\frac{\pi}{2},\frac{\pi}{2}[$. [/mm] Es gilt [mm] $\cos\varphi>0$. [/mm] Nun muss ich folgende Aussage zeigen:

     [mm] $\lim_{r\to\infty}\sqrt{r^2+e^{2r\cos\varphi}+2re^{r\cos\varphi}\cos(\varphi-r\sin\varphi)}=\infty$ [/mm]

Hat jemand eine Ahnung, wie ich diese Aussage zeige (bzw. begründe). Ich scheine irgendwie ratlos zu sein.

Danke und Gruss

        
Bezug
Schwierige Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Do 07.05.2009
Autor: Denny22

Jemand scheint diese Aufgabe zu reserviert zu haben, ohne sie zu beantworten. Da ich nach wie vor die Antwort benötige, bitte ich per Mitteilung zu antworten.

Danke und Gruß

Bezug
        
Bezug
Schwierige Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Do 07.05.2009
Autor: reverend

Hallo Denny,

das sieht faul aus. Stimmt die Aufgabenstellung?

Da steht ja [mm] \wurzel{r^2+a+b} [/mm] mit a,b>0. Der Term ist also sicher [mm] >\wurzel{r^2}. [/mm]

Nun noch den Grenzwert [mm] \limes_{r\rightarrow\infty}\wurzel{r^2} [/mm] bestimmen; fertig.

Bitte kontrolliere also noch einmal, ob Schreibfehler vorliegen.

Grüße
reverend

Bezug
                
Bezug
Schwierige Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Do 07.05.2009
Autor: Denny22


> Hallo Denny,
>  
> das sieht faul aus. Stimmt die Aufgabenstellung?

Die Aufgabe ist zu kompliziert um sie hier vollständig wiederzugeben. Bei der hier gestellten Aufgabe handelt es sich lediglich um den letzten Rechenschritt.

> Da steht ja [mm]\wurzel{r^2+a+b}[/mm] mit a,b>0. Der Term ist also
> sicher [mm]>\wurzel{r^2}.[/mm]
>  
> Nun noch den Grenzwert
> [mm]\limes_{r\rightarrow\infty}\wurzel{r^2}[/mm] bestimmen; fertig.

Kurze Rückfrage: Wie kommst Du darauf, dass der letzte Summand unter der Wurzel größer 0 ist? Das stimmt doch gar nicht. Setze [mm] $\varphi=\frac{\pi}{4}$ [/mm] oder [mm] $-\frac{\pi}{4}$, [/mm] dann oszilliert der letzte Summand.

> Bitte kontrolliere also noch einmal, ob Schreibfehler
> vorliegen.
>  
> Grüße
>  reverend

Gruß Denny

Bezug
                        
Bezug
Schwierige Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Do 07.05.2009
Autor: reverend

Hallo nochmal,

Du hast natürlich Recht. Entschuldigung, da habe ich zu schnell draufgeschaut.

Dafür hoffe ich, dass Dir dieser Graph den richtigen Weg weist:

[Dateianhang nicht öffentlich]

Liebe Grüße
reverend

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
        
Bezug
Schwierige Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Fr 08.05.2009
Autor: pelzig

[mm] $\sqrt{r^2+e^{2r\cos\varphi}+2re^{r\cos\varphi}\cos(\varphi-r\sin\varphi)}\ge\sqrt{r^2+e^{2r\cos\varphi}-2re^{r\cos\varphi}}=\sqrt{(r-e^{r\cos\varphi})^2}=|e^{r\cos\varphi}-r|\ge e^{r\cos\varphi}-r\ge \frac{(r\cos\varphi)^2}{2}-r$ [/mm]

Gruß, Robert

Bezug
                
Bezug
Schwierige Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:40 Fr 08.05.2009
Autor: Denny22

Hallo ihr zwei (pelzig und reverend),

das sollte mir sicherlich weiterhelfen. Tausend Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de