www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Sinus und Cosinus in einer Fkt
Sinus und Cosinus in einer Fkt < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus und Cosinus in einer Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 So 30.01.2011
Autor: raida

Aufgabe
2 = 2*sin²(t) - cos(t)

Hallo,
komme bei der Aufgabe nicht weiter:

Anwendung von Additionstheorem:

2 = [mm] 2*\bruch{1}{2}*(1-cos(2t)) [/mm] - cos(t)

1 = -cos(2t) - cos(t)

Jetzt dachte ich vlt. auf beiden Seiten mit arccos zu multiplizieren, aber scheint nicht richtig zu sein:

arccos(1) = -2t - t
0 = 3t   XX

Danke.
Grüße

        
Bezug
Sinus und Cosinus in einer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 So 30.01.2011
Autor: fencheltee


> 2 = 2*sin²(t) - cos(t)

besser ist hier: [mm] sin^2+cos^2=1 [/mm] zu benutzen. du erhälst dann eine quadratische gleichung. es hilft vielleicht cos(t) mit z zu substitutieren

>  Hallo,
>  komme bei der Aufgabe nicht weiter:
>  
> Anwendung von Additionstheorem:
>  
> 2 = [mm]2*\bruch{1}{2}*(1-cos(2t))[/mm] - cos(t)
>  
> 1 = -cos(2t) - cos(t)
>  
> Jetzt dachte ich vlt. auf beiden Seiten mit arccos zu
> multiplizieren, aber scheint nicht richtig zu sein:
>  
> arccos(1) = -2t - t
>  0 = 3t   XX
>  
> Danke.
>  Grüße

gruß tee

Bezug
                
Bezug
Sinus und Cosinus in einer Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mo 31.01.2011
Autor: raida

Entschuldige, aber verstehe nicht ganz wie man hier auf
[mm] sin^{2}+cos^{2}=1 [/mm]
kommen soll?

Grüße


Bezug
                        
Bezug
Sinus und Cosinus in einer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Mo 31.01.2011
Autor: Gonozal_IX

Huhu,

darauf sollst du nicht KOMMEN, das sollst du BENUTZEN.

[mm] $\sin^2(x) [/mm] + [mm] \cos^2(x) [/mm] = 1$ gilt immer!
Daraus folgt, dass du das [mm] $\sin^2$ [/mm] in der Gleichung zu [mm] $(1-\cos^2)$ [/mm] umschreiben kannst und eine quadratische Gleichung in [mm] $\cos(x)$ [/mm] erhälst, die du nach bekannten Methoden lösen kannst.

MFG,
Gono

Bezug
                                
Bezug
Sinus und Cosinus in einer Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Mo 31.01.2011
Autor: raida

Okay, vielen Dank. Hier meine Lösung:

2 = 2*sin²(t) - cos(t)

mit sin²(t) + cos²(t) = 1

2 = 2-2*cos²(t) - cos(t)
0 = cos²(t) + cos(t)

Substitution: cos(t) = z
0 = z² +z

p-q-Formel...

z1=0; z2=-1

arccos(z) = t
t1 = 90
t2 = 180

Probe ergibt, dass t1, die korrekte Lösung ist, d.h. t1=90 bzw. t1 = [mm] 0,5\pi [/mm]

Grüße

Bezug
                                        
Bezug
Sinus und Cosinus in einer Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Mo 31.01.2011
Autor: Gonozal_IX

Huhu

vorweg: Stell deine Frage doch nächstemal bitte als solche! Nicht als Mitteilung.

> Okay, vielen Dank. Hier meine Lösung:
>  
> 2 = 2*sin²(t) - cos(t)
>  
> mit sin²(t) + cos²(t) = 1
>  
> 2 = 2-2*cos²(t) - cos(t)

[ok]

>  0 = cos²(t) + cos(t)

Hier ist dir der Faktor 2 vor [mm] \cos^2 [/mm] abhanden gekommen.
  

> Probe ergibt, dass t1, die korrekte Lösung ist, d.h. t1=90
> bzw. t1 = [mm]0,5\pi[/mm]

Nein. Deine Probe hat dir nur aufgezeigt, dass du einen Fehler gemacht hast (siehe oben). Deine zweite Lösung stimmt halt aufgrund obigen Rechenfehlers nicht.... machst du alles korrekt, erhälst du eine zweite, korrekte Lösung!

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de