www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Skizzieren von Mengen
Skizzieren von Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 03.11.2011
Autor: thadod

Hallo Leute...

ich habe leider ein Problem beim skizzieren von folgender Menge:

[mm] A=\{(x,y) \in \IR^2 | cos(2x)=1 \} [/mm]

Wenn ich nur cos(x)=1 betrachte, dann habe ich ja jeweils einen Punkt bei x=k [mm] \cdot \pi [/mm] für [mm] k=0,2,4,6,...,\infty [/mm]

Wenn ich nun cos(2x)=1 betrachte, dann habe ich ja jeweils einen Punkt bei x=k [mm] \cdot \pi [/mm] für [mm] k=0,1,2,3,4,...,\infty [/mm]

Aber kann ich so auch meine Menge Skizzieren? Also eingfach Punkte zeichnen auf den jeweiligen Maxima von cos(2x)???

mfg thadod

        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Do 03.11.2011
Autor: schachuzipus

Hallo thadod,


> Hallo Leute...
>  
> ich habe leider ein Problem beim skizzieren von folgender
> Menge:
>  
> [mm]A=\{(x,y) \in \IR^2 | cos(2x)=1 \}[/mm]
>  
> Wenn ich nur cos(x)=1 betrachte, dann habe ich ja jeweils
> einen Punkt bei x=k [mm]\cdot \pi[/mm] für [mm]k=0,2,4,6,...,\infty[/mm]

Und für negative gerade $k$

Anders ausgedrückt: [mm] $\cos(x)=1\gdw x=2k\pi$ [/mm] mit [mm] $k\in\IZ$ [/mm]

>  
> Wenn ich nun cos(2x)=1 betrachte, dann habe ich ja jeweils
> einen Punkt bei x=k [mm]\cdot \pi[/mm] für [mm]k=0,1,2,3,4,...,\infty[/mm]

Auch hier ist [mm] $k\in\IZ$ [/mm] zu wählen, ansonsten stimmt's!

>  
> Aber kann ich so auch meine Menge Skizzieren? Also eingfach
> Punkte zeichnen auf den jeweiligen Maxima von cos(2x)???

Naja, du hast bisher nur die x-Koordinate betrachtet, die sich aus der Bedingung [mm] $\cox(2x)=1$ [/mm] ergab.

Die y-Koordinate ist dabei egal.

Die Menge beschreibt also lauter parallele Geraden, allesamt orthogonal zur x-Achse ...

>  
> mfg thadod

Gruß

schachuzipus


Bezug
                
Bezug
Skizzieren von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Do 03.11.2011
Autor: thadod

Hallo und Danke...

ich habe nun eine Skizze angefertigt:

[Dateianhang nicht öffentlich]

Wie sieht es aber nun aus mit den Randpunkten und den inneren Punkten???

Ist die Menge abgeschlossen oder offen???

Mein Lösungsvorschlag:

Der Rand: [mm] \partial A=\{(x,y) \in \IR^2 | cos(2x)=1 \} [/mm]


Die inneren Punkte: [mm] A=\emptyset [/mm]

Die Menge ist abgeschlossen, da der Rand in der Menge enthalten ist.
Die Menge ist nicht offen, da es Randpunkte gibt, die zur Menge gehören

mfg thadod

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Skizzieren von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 03.11.2011
Autor: fred97


> Hallo und Danke...
>  
> ich habe nun eine Skizze angefertigt:
>  
> [Dateianhang nicht öffentlich]
>  
> Wie sieht es aber nun aus mit den Randpunkten und den
> inneren Punkten???
>  
> Ist die Menge abgeschlossen oder offen???
>  
> Mein Lösungsvorschlag:
>  
> Der Rand: [mm]\partial A=\{(x,y) \in \IR^2 | cos(2x)=1 \}[/mm]


O.K.


>  
>
> Die inneren Punkte: [mm]A=\emptyset[/mm]

Besser:  [mm] A^o=\emptyset [/mm]


>  
> Die Menge ist abgeschlossen, da der Rand in der Menge
> enthalten ist.


Ja


>  Die Menge ist nicht offen, da es Randpunkte gibt, die zur
> Menge gehören

Ja

FRED

>  
> mfg thadod


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de