www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Strahlensatz
Strahlensatz < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strahlensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 12.02.2009
Autor: zitrone

Hallo,

hab in Mathe eine Aufgabe bekommen, bei der ich mir unsicher bin, wie die funktioniert. Ich hab einen Anfang, aber irgendwie komm ich nicht weiter...Könnte mir daher bitte jemand helfen?

Aufg.:
Die Eichenmarke des Sektglases ist 10 cm hoch. Ein Barkeeper füllt jedoch ummer nur bis 1 cm unter dieser marke. wie viel Prozent des Sektes "spart" er dabei?

Meine Anfang:

Strahlensatz:
[Dateianhang nicht öffentlich]

[mm] \bruch{r_{2}}{r_{1}} [/mm] = [mm] \bruch{9}{10} [/mm]


lg zitrone

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Strahlensatz: Aufgabe
Status: (Antwort) fertig Status 
Datum: 20:24 Do 12.02.2009
Autor: JohnF.Kennedy

Du machst es völlig richtig
so würde ich es auch machen

Bezug
                
Bezug
Strahlensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Do 12.02.2009
Autor: zitrone

Hallo,

gut. Aber ich versteh jetzt nicht wie ich weiter rechnen soll, weil ich 2 angaben nicht hab???


lg zitrone

Bezug
                        
Bezug
Strahlensatz: Volumina
Status: (Antwort) fertig Status 
Datum: 20:51 Do 12.02.2009
Autor: Loddar

Hallo zitrone!


Berechne nun die beiden Volumina [mm] $V_1$ [/mm] und [mm] $V_2$ [/mm] der beiden Kreiskegel.

Durch Einsetzen von [mm] $r_2 [/mm] \ = \ [mm] 0.9*r_1$ [/mm] kannst Du dann den prozentualen "Verlust" ermitteln.


Gruß
Loddar


Bezug
                                
Bezug
Strahlensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:35 Do 12.02.2009
Autor: zitrone

Guten Abend!

Also, wenn ich die Voluminas der beiden Kegelkreise ausrechnen, muss die Rechnung doch so lauten:

V (groß Kreiskegel)= [mm] \bruch{1}{3}*G*h [/mm]
V= [mm] \bruch{1}{3}* [/mm] r² * [mm] \pi [/mm]  * 10cm

[IMG]http://i116.photobucket.com/albums/o24/harui8/sektg.jpg[/IMG]

[IMG]http://i116.photobucket.com/albums/o24/harui8/Untitled-1copy.jpg[/IMG]

aber jetzt fehlen mir wieder  2 Angaben. Wie soll ich denn da rechnen?

lg zitrone

Bezug
                                        
Bezug
Strahlensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Do 12.02.2009
Autor: reverend

Hallo zitrone,

Du hast doch folgendes schon vorliegen:

[mm] \bruch{r_2}{r_1}=\bruch{9}{10} [/mm]

[mm] h_2=9cm,\quad h_1=10cm [/mm]

Das volle Glas hat den Inhalt [mm] V_1=\bruch{1}{3}\pi {r_1}^2*10 [/mm]

und nicht ganz volle hat den Inhalt [mm] V_2=\bruch{1}{3}\pi {r_2}^2*9 [/mm]

Du willst schließlich herausbekommen, wieviel Prozent der Barkeeper "spart", also den Wert [mm] 100*(1-\bruch{V_2}{V_1}). [/mm]

Wenn Du nun [mm] V_1 [/mm] und [mm] V_2 [/mm] einsetzt, hast Du in der Tat noch [mm] \bruch{{r_2}^2}{{r_1}^2} [/mm] in Deiner Gleichung.

Aber [mm] \bruch{{r_2}^2}{{r_1}^2}=\left(\bruch{r_2}{r_1}\right)^2, [/mm] und da war doch noch eine Gleichung gar nicht verwendet...

Grüße,
reverend

Bezug
                                                
Bezug
Strahlensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Do 12.02.2009
Autor: zitrone

Guten Abend reverend!

Also wenn ich das jetzt machen würde, also [mm] 100\cdot{}(1-\bruch{V_2}{V_1})= 100\cdot{}(1-\bruch{\bruch{1}{3}*r²*\pi *9}{\bruch{1}{3}*r²*\pi *10})= [/mm] 100 *(1-0,9)=10.

kann nicht stimmen,oder?

lg zitrone

Bezug
                                                        
Bezug
Strahlensatz: Quadrat
Status: (Antwort) fertig Status 
Datum: 23:18 Do 12.02.2009
Autor: Loddar

Hallo zitrone!


Nein, das stimmt nicht, da Du hier das Quadrat um den Bruch [mm] $\bruch{9}{10}$ [/mm] unterschlagen hast.


Gruß
Loddar


Bezug
                                                                
Bezug
Strahlensatz: noch schlimmer ;-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Do 12.02.2009
Autor: reverend

Hallo zitrone,

> Nein, das stimmt nicht, da Du hier das Quadrat um den Bruch
> [mm]\bruch{9}{10}[/mm] unterschlagen hast.

Wenn ich richtig sehe, sind die 9 und die 10 hier doch die Höhen. Du kürzt einfach [mm] \bruch{r^2}{r^2}, [/mm] aber den gibts hier doch gar nicht!

Er heißt [mm] \bruch{{r_2}^2}{{r_1}^2} [/mm] ...

Ich hätte gar nicht gedacht, dass der eine Zentimeter Füllunterschied gleich 27,1% der Menge ausmacht. Fazit: Nippe nie an einem Sektglas.

Oder hast Du eine andere Lösung?

Grüße,
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de