www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Urnenmodell
Urnenmodell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:27 Fr 20.04.2012
Autor: seaside

Aufgabe
Eine Urne enthält 3 rote, 3 blaue und 4 gelbe Kugeln.
a) Wie groß ist die Wahrscheinlichkeit, dass zwei gleichzeitig gezogene Kugeln gleichfarbig sind?
b) Wir ziehen hintereinander zwei Kugeln ohne Zurücklegen. Wie groß ist die Wahrscheinlichkeit, dass die zweite Kugel nicht rot ist, wenn die erste Kugel nicht gelb war?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich brauche Hilfe bei den oben genannten Aufgaben.

Kann ich das erste Teilexperiment a) als mehrstufiges Experiment aufbauen obwohl explizit das gleichzeitige Ziehen aus der Urne angegeben wurde? Ich habe zunächst einen Baum gemalt und die drei Pfade bei denen die Kugeln gleich sind zusammen addiert. Ich komme dann auf 52/225.

Bei der zweiten Aufgabe habe ich mir überlegt einfach die vier Pfade die zutreffen würde also erste Kugel rot oder blau und zweite Kugel gelb oder blau zu addieren.

Ich bin für jede Hilfe dankbar :)

        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Fr 20.04.2012
Autor: Diophant

Hallo seaside und

[willkommenvh]

> Eine Urne enthält 3 rote, 3 blaue und 4 gelbe Kugeln.
> a) Wie groß ist die Wahrscheinlichkeit, dass zwei
> gleichzeitig gezogene Kugeln gleichfarbig sind?
> b) Wir ziehen hintereinander zwei Kugeln ohne Zurücklegen.
> Wie groß ist die Wahrscheinlichkeit, dass die zweite Kugel
> nicht rot ist, wenn die erste Kugel nicht gelb war?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo,
>
> ich brauche Hilfe bei den oben genannten Aufgaben.
>
> Kann ich das erste Teilexperiment a) als mehrstufiges
> Experiment aufbauen obwohl explizit das gleichzeitige
> Ziehen aus der Urne angegeben wurde? Ich habe zunächst
> einen Baum gemalt und die drei Pfade bei denen die Kugeln
> gleich sind zusammen addiert. Ich komme dann auf 52/225.

Deine Vorgehensweise ist schon richtig, nur kommt etwas anderes heraus. Welche Wahrscheinlichkeiten hast du denn entlang der Pfade bzw. könntest du deine Rechnung noch angeben?

>
> Bei der zweiten Aufgabe habe ich mir überlegt einfach die
> vier Pfade die zutreffen würde also erste Kugel rot oder
> blau und zweite Kugel gelb oder blau zu addieren.
>

Achtung: das ist eine bedingte Wahrscheinlichkeit, hier ist deine Vorgehensweise am Baumdiagramm nicht richtig. Man kann das zwar auch am Baumdiagramm lösen, aber vielleicht hilft dir der Tipp mit der bedingten Wahrscheinlichkeit ja schon weiter.


Gruß, Diophant

Bezug
                
Bezug
Urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 So 22.04.2012
Autor: seaside

Danke, für deine Antwort.

Bei der ersten habe ich nun 4/15?!

Die zweite Aufgabe habe ich nun mit der bedingten Wahrscheinlichkeit gelöst.

Hier ist meine Lösung:

P(zweite nicht rot|erste nicht gelb)=
P(zweite gelb oder blau|erste rot oder blau)

=((3/10*(4/9+3/9)+3/10*2/9+4/9)+4/10*(3/9+3/9))*(3/9+4/9+2/9+4/9))   / (3/10+3/10) = 91/54

stimmt das so?


Bezug
                        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Mo 23.04.2012
Autor: Diophant

Hallo,

die erste Aufgabe hast du richtig.

Zur zweiten Aufgabe:

> Hier ist meine Lösung:
>
> P(zweite nicht rot|erste nicht gelb)=
> P(zweite gelb oder blau|erste rot oder blau)
>
> =((3/10*(4/9+3/9)+3/10*2/9+4/9)+4/10*(3/9+3/9))*(3/9+4/9+2/9+4/9))
> / (3/10+3/10) = 91/54
>
> stimmt das so?

Au weia, wie war gleich nochmal der Begriff Wahrscheinlichkeit definiert bzw. welche Werte können Wahrscheinlichkeiten annehmen? Du hättst hier unmittelbar sehen müssen, dass das Ergebnis nicht stimmen kann.

Zur Kontrolle: ich bekomme 13/18 heraus. Versuche mal, ob du das nachvollziehen kannst und melde dich gerne wieder, um die Aufgabe vollends zu klären.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de