www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektoranalysis
Vektoranalysis < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoranalysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mo 10.10.2005
Autor: kruder77

Hallo,

ich habe gerade folgende Aufgabe gerechnet und weiß nicht ob dass alles so richtig ist wie ich es gemacht habe.

Der Text zur Aufgabe war einfach nur "Berechnen Sie: [mm] div(\bruch{\overrightarrow {r}}{r^{3}}) [/mm] wobei  [mm] \overrightarrow{r} [/mm] und r gegeben sind"...

Da es die Divergenz eines Vektors ist, kommt ein Skalar heraus und es muss etwas mit "Quellen, Senken" zu tun haben.

hier nun meine Rechnung:

[Dateianhang nicht öffentlich]


Kann mit vielleicht jemand erklären was ich aus dem Ergebniss für Schlüsse ziehen kann? Ich sehe da im Moment überhaupt keinen Sinn...

Vielen Dank
kruder

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Vektoranalysis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mo 10.10.2005
Autor: noebi

Hallo!
Dein Fehler liegt in der Berechnung des Skalarprodukts des Nabla-Operators mit dem Vektor [mm] \bruch{\vec{r}}{r³}. [/mm] Wie der Name schon sagt, entsteht beim Skalarprodukt ein Skalar und kein Vektor und auch keine Matrix. Wenn du es mathematisch korrekt machen willst, musst du beim Skalarprodukt den ersten Vektor transponiert (liegend) darstellen. Dann ergibt sich mit den Rechenregeln für Matrizenmultiplikation ein Skalar. Machst du es umgekehrt, entsteht eine Matrix.
Du kannst auch spezlieller das Skalarprodukt zweier Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] als  [mm] \summe_{i=1}^{3}a_{i}b_{i} [/mm] sehen.
Wenn deine Ableitungen stimmen, erhältst du also:

div [mm] \bruch{\vec{r}}{r³} [/mm] = [mm] \bruch{1}{r^5} \vektor{-2x²+y²+z² \\ -2y²+x²+z² \\ -2z²+y²+z²} [/mm]

Die Divergenz liefert die Quellen eines Vektorfeldes! Verschwindet die Divergenz, ist das Vektorfeld quellenfrei. In der Elektrostatik trifft dies zum Beispiel auf das magnetische Feld zu, dessen Divergenz immer verschwindet, was gleich bedeutend mit der Nichtexistenz magnetischer Monopole (=Quellen) ist. Anders beim elektrischen Feld: Hier liefert die Divergenz die elektrische Ladungsdichte.

Gruß,
Nöbi.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de