www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 Fr 08.05.2009
Autor: Fry

Aufgabe
Welche der folgenden auf [mm] \IR [/mm] definierten Funktionen sind stets Verteilungsfkten, wobei [mm] F,G,F_{i} [/mm] Verteilungsfkt und [mm] a\in\IR, b\in(0,\infty),n\in\IN, a_{i}\in(0,\infty) [/mm] mit [mm] \summe_{i=1}^{\infty}a_{i}=1 [/mm]

(1)F*G
(2)max(F,G)
(3)min(F,G)
[mm] (4)F^n [/mm]
[mm] (5)\sqrt(F) [/mm]
[mm] (6)\summe_{i=1}^{\infty}a_{i}F_{i} [/mm]
(7) |2F-G|
[mm] (8)\bruch{F}{2-G} [/mm]
[mm] (9)exp(-\bruch{1-F}{F}) [/mm]
(10) F(x-a)
(11) F(bx)

Dabei darf benutzt werden:
(1) $ [mm] f\circ [/mm] $ F und $ [mm] F\circ [/mm] $ g sind Verteilungsfunktionen, wenn f: $ [mm] [0,1]\to[0,1] [/mm] $ und g: $ [mm] \IR\to\IR [/mm] $ stetig,surjektiv und monoton steigend sind und F eine Verteilungsfkt ist.

(2) Ist $ [mm] h:[0,1]x[0,1]\to[0,1] [/mm] $ stetig,surjektiv und schwach monoton (d.h. $ [mm] x_{1}\le x_{2},y_{1}\le y_{2}\Rightarrow h(x_{1},y_{1})\le h(x_{2},y_{2}) [/mm] $ und F,G Verteilungsfkten, dann ist $ [mm] h\circ [/mm] $ (F,G) eine Verteilungsfkt  

Hallo,

also ich hab mich mal an der Aufgabe versucht,
Meine "Lösungen":
(1),(4),(5);(9);(10),(11) sind Verteilungsfkten, wobei man die Eigenschaften mithilfe des Tipps "leicht" nachrechnen (mit ZWS, Monotonie,...) kann.
Bei (3) und (7) hab ich ein Gegenbeispiel gefunden. Stimmt das wohl?
Hat jemand vielleicht Ideen, Tipps für (2),(6),(8) ?
Bin für jede Hilfe dankbar !

LG
Fry


        
Bezug
Verteilungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:16 Fr 08.05.2009
Autor: Fry

So, ich denke, dass ich auch bewiesen hab, dass max(F,G) eine Verteilungsfkt ist und ich hab ein Gegenbeispiel zu [mm] \bruch{F}{2-G} [/mm] gefunden und zwar:
[mm] F(x)=\begin{cases} 0, & x<0 \\ 1 & x\ge 1 \end{cases} [/mm]
[mm] G(x)=\begin{cases} 0, & x<0 \\ 0,5 & x\in[0.1] \\ 1 & x>1 \end{cases} [/mm]
Dann ist [mm] \bruch{F}{2-G} [/mm] nicht rechtseitig stetig in 1. Stimmt das?
Nun noch die letzte Fkt = )...

Bezug
        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:39 Fr 08.05.2009
Autor: felixf

Hallo!

> Welche der folgenden auf [mm]\IR[/mm] definierten Funktionen sind
> stets Verteilungsfkten, wobei [mm]F,G,F_{i}[/mm] Verteilungsfkt und
> [mm]a\in\IR, b\in(0,\infty),n\in\IN, a_{i}\in(0,\infty)[/mm] mit
> [mm]\summe_{i=1}^{\infty}a_{i}=1[/mm]
>  
> (1)F*G
>  (2)max(F,G)
>  (3)min(F,G)
>  [mm](4)F^n[/mm]
>  [mm](5)\sqrt(F)[/mm]
>  [mm](6)\summe_{i=1}^{\infty}a_{i}F_{i}[/mm]
>  (7) |2F-G|
>  [mm](8)\bruch{F}{2-G}[/mm]
>  [mm](9)exp(-\bruch{1-F}{F})[/mm]
>  (10) F(x-a)
>  (11) F(bx)
>  
> Dabei darf benutzt werden:
>  (1) [mm]f\circ[/mm] F und [mm]F\circ[/mm] g sind Verteilungsfunktionen, wenn
> f: [mm][0,1]\to[0,1][/mm] und g: [mm]\IR\to\IR[/mm] stetig,surjektiv und
> monoton steigend sind und F eine Verteilungsfkt ist.
>  
> (2) Ist [mm]h:[0,1]x[0,1]\to[0,1][/mm] stetig,surjektiv und schwach
> monoton (d.h. [mm]x_{1}\le x_{2},y_{1}\le y_{2}\Rightarrow h(x_{1},y_{1})\le h(x_{2},y_{2})[/mm]
> und F,G Verteilungsfkten, dann ist [mm]h\circ[/mm] (F,G) eine
> Verteilungsfkt
>
> Hallo,
>  
> also ich hab mich mal an der Aufgabe versucht,
>  Meine "Lösungen":
>  (1),(4),(5);(9);(10),(11) sind Verteilungsfkten, wobei man
> die Eigenschaften mithilfe des Tipps "leicht" nachrechnen
> (mit ZWS, Monotonie,...) kann.

Nun, eigentlich muesste man bei (9) sagen, dass fuer $F(x) = 0$ man [mm] $\exp(-\frac{1 - F}{F})(x) [/mm] := 0$ definiert. Davon abgesehen stimmt das aber.

Und (2) hattest du ja mittlerweile auch.

>  Bei (3) und (7) hab ich ein Gegenbeispiel gefunden. Stimmt
> das wohl?

Bei (7) sicher. Allerdings frag ich mich gerade, ob (3) nicht eigentlich genauso wie (2) richtig sein sollte. (Rechtsseitige Stetigkeit passt, Grenzwerte gegen [mm] $\pm \infty$ [/mm] passen, Monotonie passt...)

>  Hat jemand vielleicht Ideen, Tipps für (2),(6),(8) ?

Dein Gegenbeispiel zu (8) stimmt so nicht: $G$ selber ist nicht rechtsseitig stetig in $1$, womit es keine Verteilungsfunktion ist. Ich vermute recht stark, dass (8) stimmt.

Und (6) sollte auch stimmen. Man koennte auch welche der [mm] $a_i$ [/mm] als 0 akzeptieren, solange [mm] $\sum a_i [/mm] = 1$ gilt.

LG Felix


Bezug
                
Bezug
Verteilungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Sa 09.05.2009
Autor: Fry

Hi Felix,

danke für deine Hilfe, hast Recht, die Beispiele waren falsch,
hatte gedacht, ich könnte eine Kompostionsfunktion finden, die nicht rechtsseitig stetig ist. Dann sollten natürlich auch die Ausgangsfunktionen rechtsseitig stetig sein ; )...Die anderen Beweise habe noch hinbekommen.

VG
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de