www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Vollständige Induktionen
Vollständige Induktionen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktionen: Ungleichung
Status: (Frage) beantwortet Status 
Datum: 23:02 Mo 15.11.2010
Autor: dani_123

Aufgabe
[mm] \bruch{1}{1+n} [/mm] + [mm] \bruch{1}{1+(n+1)}+...+\bruch{1}{1+(2n-1}+\bruch{1}{1+2n} [/mm] > [mm] \bruch{13}{24} [/mm]

Hallo!

Habe dieses Beispiel im Net gefunden, mit Lösung! Doch bei der Lösung versteh ich etwas nicht!

Lösung:
[mm] \bruch{1}{1+n} [/mm] + [mm] \bruch{1}{1+(n+1)}+...+\bruch{1}{1+(2n-1}+\bruch{1}{1+2n} [/mm] = [mm] \summe{k=n+1}^{2n+1} \bruch{1}{k} [/mm] > [mm] \bruch [/mm] {13}{24} (für alle n [mm] \ge [/mm] 2)

Behauptung:
[mm] \summe{k=n+1}^{2n+1} \bruch{1}{k} [/mm] > [mm] \bruch{13}{24} [/mm] (für alle n [mm] \ge [/mm] 2)

Anfang:
n=2 : [mm] \bruch{1}{2+1} [/mm] + [mm] \bruch{1}{2.2} [/mm] = [mm] \bruch{7}{12} [/mm] > [mm] \bruch{13}{24} [/mm]

Schluss:
[mm] \summe{k=n+2}^{2n+1} \bruch{1}{k} [/mm] = [mm] \summe{k=n+2}^{2n+2} \bruch{1}{k}= \summe{k=n+1}^{2n} \bruch{1}{k} [/mm] + [mm] \bruch{1}{2n+1} [/mm] - [mm] \bruch{1}{1+n} [/mm] > [mm] \bruch{13}{24} [/mm] + [mm] \bruch{1}{2n+1}+\bruch{1}{2(n+1)}- \bruch{1}{n+1}= \bruch [/mm] {13}{24} + [mm] \bruch{2(n+1)+(2n+1)-2(en+1)}{2(n+1)(2n+1)}=\bruch{13}{24} [/mm] + [mm] \bruch{2n+2+2n+1-4n-2}{2(n+1)(2n+1)} [/mm] = [mm] \bruch{13}{24} [/mm] + [mm] \bruch{1}{2(n+1)(2n+1)}> \bruch{13}{24} [/mm]


Also der Anfang ist mir klar! Doch der Induktionsschritt leuchtet mir nicht ein!
Vielleicht steh ich auch nur auf der Leitung doch ich würde mich freuen wenn mir jemand hilft!
PS: Warum wird der gemeinsame Nenner 2(n+1) (2n+1)

Vielen Dank
Dani

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:18 Di 16.11.2010
Autor: Fulla

Hallo Dani,

> [mm]\bruch{1}{1+n}[/mm] +
> [mm]\bruch{1}{1+(n+1)}+...+\bruch{1}{1+(2n-1}+\bruch{1}{1+2n}[/mm] >
> [mm]\bruch{13}{24}[/mm]
>  Hallo!
>  
> Habe dieses Beispiel im Net gefunden, mit Lösung! Doch bei
> der Lösung versteh ich etwas nicht!

Ich auch nicht! Ich hab lange gebraucht, bis ich aus dieser Lösung die passene Aufgabenstellung rekonstruiert hab. Die Aufgabe muss lauten:

Zeige [mm]\sum_{k=n+1}^{2n}\frac{1}{k}>\frac{13}{24}[/mm].

> Lösung:
>  [mm]\bruch{1}{1+n}[/mm] +
> [mm]\bruch{1}{1+(n+1)}+...+\bruch{1}{1+(2n-1}+\bruch{1}{1+2n}[/mm] =
> [mm]\summe_{k=n+1}^{2n+1} \bruch{1}{k}[/mm] > [mm]\bruch[/mm] [mm]\frac{13}{24}[/mm] (für
> alle n [mm]\ge[/mm] 2)
>  
> Behauptung:
> [mm]\summe_{k=n+1}^{2n+1} \bruch{1}{k}[/mm] > [mm]\bruch{13}{24}[/mm] (für
> alle n [mm]\ge[/mm] 2)
>  
> Anfang:
>  n=2 : [mm]\bruch{1}{2+1}[/mm] + [mm]\bruch{1}{2\red{+}2}[/mm] = [mm]\bruch{7}{12}[/mm] >

> [mm]\bruch{13}{24}[/mm]

> Schluss:
>  [mm]\summe_{k=n+2}^{2n+1} \bruch{1}{k}[/mm] = [mm]\summe_{k=n+2}^{2n+2} \bruch{1}{k}= \summe_{k=n+1}^{2n} \bruch{1}{k}[/mm]
> + [mm]\bruch{1}{2n+1}[/mm] - [mm]\bruch{1}{1+n}[/mm] > [mm]\bruch{13}{24}[/mm] +
> [mm]\bruch{1}{2n+1}+\bruch{1}{2(n+1)}- \bruch{1}{n+1}= \bruch[/mm]
> [mm]\frac{13}{24} +[/mm]
> [mm]\bruch{2(n+1)+(2n+1)-2(en+1)}{2(n+1)(2n+1)}=\bruch{13}{24}[/mm]
> + [mm]\bruch{2n+2+2n+1-4n-2}{2(n+1)(2n+1)}[/mm] = [mm]\bruch{13}{24}[/mm] +
> [mm]\bruch{1}{2(n+1)(2n+1)}> \bruch{13}{24}[/mm]
>  
>
> Also der Anfang ist mir klar! Doch der Induktionsschritt
> leuchtet mir nicht ein!
>  Vielleicht steh ich auch nur auf der Leitung doch ich
> würde mich freuen wenn mir jemand hilft!
> PS: Warum wird der gemeinsame Nenner 2(n+1) (2n+1)

Entweder hast du dich vertippt oder der Autor der "Musterlösung".
Zunächsteinmal fehlt die Induktionsvoraussetzung:
Sei die Behauptung bereits für ein [mm]n\ge 2[/mm] bewiesen.

Jetzt der Induktionsschritt (oder -schluss): Zeige, dass die Behauptung dann auch für n+1 gilt.
[mm]\sum_{k=n+2}^{2n+2}\frac{1}{k}=\sum_{n+2}^{2n+1}\frac{1}{k}+\frac{1}{2n+2}=\sum_{n+2}^{2n}\frac{1}{k}+\frac{1}{2n+2}+\frac{1}{2n+1}=\sum_{n+1}^{2n}\frac{1}{k}+\frac{1}{2n+2}+\frac{1}{2n+1}-\frac{1}{n+1}[/mm]
Damit man die Induktionsvoraussetzung verwenden kann, muss die Summe auf die entsprechende Form gebracht werden. Dazu spaltet man ddie letzten beiden Summanden ab und schreibt sie dahinter ([mm]+\frac{1}{2n+2}+\frac{1}{2n+1}[/mm]). Außerdem soll die Summe ja bei n+1 anfangen. Da jetzt aber ein Summand zuviel vorkommt, muss er wieder abgezogen werden ([mm]-\frac{1}{n+1}[/mm])

Jetzt kannst du die Induktionsvoraussetzung verwenden:
[mm]\ldots >\frac{13}{24}+\underbrace{\frac{1}{2n+2}}_{=2(n+1)}+\frac{1}{2n+1}-\frac{1}{n+1}=\frac{13}{24}+\frac{2n+1+2(n+1)-2(2n+1)}{2(n+1)(2n+1)}=\frac{13}{24}+\frac{1}{2(n+1)(2n+1)}>\frac{13}{24}[/mm]
Das letzte > gilt, weil der Bruch [mm] $\frac{1}{2(n+1)(2n+1)}$ [/mm] für alle [mm] $n\ge [/mm] 2$ positiv ist und wenn zu [mm] $\frac{13}{24}$ [/mm] etwas positives addiert wird, ist die Summe auf jeden Fall größer als [mm] $\frac{13}{24}$. [/mm]


Ich hoffe, es ist jetzt ein bisschen klarer geworden.
Lieben Gruß,
Fulla



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de