www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Vollständigkeit
Vollständigkeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständigkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:17 Mi 27.05.2009
Autor: T_sleeper

Aufgabe
(X,d) kompakter metrischer [mm] Raum\Rightarrow [/mm] X ist vollständig.

Hallo,

ich habe mir folgendes überlegt:
Sei [mm] (x_{n})_{n\in\mathbb{N}} [/mm] beliebige Cauchy-Folge. Dann besitzt (wegen Folgenkompaktheit) [mm] x_{n} [/mm] eine konvergente Teilfolge [mm] (x_{n_{k}})_{k\in\mathbb{N}} [/mm] mit [mm] \underset{k\rightarrow\infty}{\mbox{lim}}x_{n_{k}}=x\Leftrightarrow\forall\varepsilon>0\exists N\in\mathbb{N}:d(x_{n_{k}},x)<\varepsilon\,\,\,\forall k\geq N\,\,\,\,\,\,\,(1). [/mm]

Jetzt ist [mm] x_{n} [/mm] Cauchy-Folge, d.h. [mm] \forall\varepsilon>0\exists N\in\mathbb{N}:d(x_{n},x_{n_{k}})<\varepsilon\,\,\,\forall n,n_{k}\geq N\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2).Dann [/mm] gilt folgendes: [mm] d(x_{n},x)\leq d(x_{n},x_{n_{k}})+d(x_{n_{k}},x)<\varepsilon+\varepsilon=2\varepsilon\,\,\,\,\forall n,n_{k}\geq [/mm] N. Also konvergiert [mm] x_{n}. [/mm]

Meine Frage ist erstens: Stimmt der Beweis so?

Und dann zweitens: Ich habe zwei Epsilon-Teile, nämlich (1) und (2). Ich habe da den Index, ab dem der Abstand [mm] <\varepsilon [/mm] ist beides mal mit N bezeichnet. Sollte man da lieber zwei unterschiedliche N wählen, etwa [mm] N_{0} [/mm] und [mm] N_{1} [/mm] und dann sagen, dass [mm] N_{1}\geq N_{0} [/mm] sein soll, oder ist das egal.Die gleiche Frage habe ich zu den einzelnen [mm] \varepsilon. [/mm] Sollte ich vllt. lieber für die Konvergenz das Epsilon mit [mm] \varepsilon_{1} [/mm] bezeichnen und das Cauchy-Epsilon mit [mm] \varepsilon_{2}? [/mm] Oder ist auch das so ok? Wenn ich alles was ich hier meine mal umsetze, komme ich zu folgender letzten Zeile:

[mm] d(x_{n},x)\leq d(x_{n},x_{n_{k}})+d(x_{n_{k}},x)<\varepsilon_{1}+\varepsilon_{2}=:\varepsilon\,\,\,\,\forall n,n_{k}\geq N_{1}. [/mm] Welche Version ist besser/richtiger?

Gruß Sleeper

        
Bezug
Vollständigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 Mi 27.05.2009
Autor: Gonozal_IX

Hiho,


erstmal vorweg. Der Beweis ist von der Beweisführung ok, man kann ihn an einigen Stellen nur sauberer aufschreiben :-)

Ich geh mal auf einige deiner Überlegungen ein:

> Und dann zweitens: Ich habe zwei Epsilon-Teile, nämlich (1)
> und (2). Ich habe da den Index, ab dem der Abstand
> [mm]<\varepsilon[/mm] ist beides mal mit N bezeichnet. Sollte man da
> lieber zwei unterschiedliche N wählen, etwa [mm]N_{0}[/mm] und [mm]N_{1}[/mm]
> und dann sagen, dass [mm]N_{1}\geq N_{0}[/mm] sein soll, oder ist
> das egal

Ich würde sagen [mm] N_1 [/mm] und [mm] N_0 [/mm] und dann im dritten schritt sagen [mm]\forall n,k \ge max(N_1,N_0)[/mm]. Dann hast du die Einschränkung [mm] N_1 \ge N_0 [/mm] nicht, die ja nicht immer gelten muss.

Deine Teile für (1) und (2) stimmen soweit schon, nur deinen Teil ab "Dann gilt folgendes: " würde ich an deiner Stelle weiter ausführen.
Wie gesagt, als Beweisführung versteht dich jeder, vorallem wenn du dazu was Erklären kannst (in einer mdl. Prüfung bspw.).
Aber aufgeschrieben als abzugebende Aufgabe würde ich das noch weiter ausführen. Da hilft dir insbesondere einfach das hinschreiben der Quantoren nochmal, dann musst du auch nicht mit verschiedenen Quantoren rumwurschteln, denn es gilt ja:

[mm]\forall\varepsilon'=2\varepsilon>0: d(x_{n},x) \leq d(x_{n},x_{n_{k}})+d(x_{n_{k}},x)< \varepsilon+\varepsilon=\varepsilon'\text{ }\forall n,n_{k}\geq max(N_1,N_2)[/mm]

Es gibt viele Möglichkeiten das aufzuschreiben.
Wichtig ist nur, dass klar wird, wie es zu laufen hat und das keine mathematischen Fehler drin sind.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de