www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Was ist konkret die Dichte?
Was ist konkret die Dichte? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was ist konkret die Dichte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Sa 23.02.2008
Autor: Tyvan

Hallo,

was die Verteilungsfunktion bei stetig verteilten Zufallsvariablen darstellt ist mir klar. Und welchen Zusammenhang sie zur Dichte hat ist mir auch klar. Doch was genau gibt uns die Dichte an?

Ich stelle mir einen Graphen vor der durch die Dichte deutlich gemacht wird.
Logischerweise beschreibt die Fläche darunter den Wert 1 von [mm] -\infty [/mm] bis [mm] +\infty. [/mm]

Doch wenn ich nun eine Dichtefunktion habe und einen Wert als Parameter den Funktionswert mit der Dichtefunktion ermittele, was habe ich dann?

Was konkret sagt der Funktionswert f(x) der Dichtefunktion aus?
Ich weiss nur das die Fläche von [mm] -\infty [/mm] bis zu x die Wahrscheinlichkeit ist, aber was konkret ist das f(x), also der y-Wert ?

        
Bezug
Was ist konkret die Dichte?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Sa 23.02.2008
Autor: Zneques

Hallo,

Klar:
[mm] F(x)=P(X\le x)=\int_{-\infty}^x{f(t)\; dt} [/mm]
also
f(x)=F'(x)

Das bedeutet für ein Interval [a,b]
[mm] P(X\in [a,b])=\int_{a}^b{f(t)\; dt}. [/mm]

Wenn nun der rechte Rand des Intervals b verschoben wird, dann gilt:
für [mm] c=b+\lambda [/mm]
[mm] P(X\in [a,c])=\int_{a}^c{f(t)\; dt} [/mm] , dies ist jetzt eine Funktion der rechten begrenzung c, mit
[mm] f(c)=(P(X\in [a,c]))'=(\int_{a}^c{f(t)\; dt})' [/mm]

D.h. die Dichte gibt die Veränderung der Wahrscheinlichkeit an, wenn man das Interval an dieser Stelle vergrößert. ( Also quasi die Wahrscheinlichkeit an der Stelle(/ in der Umgebung), wenn sie nicht wegen der Stetigkeit 0 wäre.)

Bildlich kann man sich das etwa so vorstellen:
Man zeichnet sich ein Diagramm und trägt alle zufällig erhaltenen Ergebnisse der Zufallsvariablen ein. Dann ist die Dichte, die Dichte der Punkte in der Umgebung um den entsprechenden Wert. [mm] (\pm [/mm] Zufall)

Ciao.

Bezug
        
Bezug
Was ist konkret die Dichte?: Deutung
Status: (Antwort) fertig Status 
Datum: 10:26 So 02.03.2008
Autor: Infinit

Hallo tyvan,
die Deutung dieses Wertes macht nur Sinn im Hinblick auf die Wahrscheinlichkeitsfunktion, die Du ja schon angesprochen hattest. Die Wahrscheinlichkeit für ein Ereignis, dass in einem Bereich [mm] \delta x [/mm] um den Wert f(x) herum liegt ist, grob gesagt, [mm] f(x)\delta x [/mm]. Bei großem Funktionswert ist die Wahrscheinlichkeit größer als bei einem kleinen Wert. Mehr sollte man nicht hier reininterpretieren.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de