www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Wilcoxon
Wilcoxon < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wilcoxon: Cauchyverteilung
Status: (Frage) überfällig Status 
Datum: 20:12 So 15.07.2012
Autor: dennis2

Aufgabe
Es sei $m=n=10$. Ferner seien [mm] $x_1,\hdots,x_{10}$ [/mm] Beobachtungen aus einer Cauchy-Verteilung mit Lokationsparameter [mm] $\mu_1=0$ [/mm] und [mm] $x_{11},\hdots,x_{20}$ [/mm] aus einer Cauchyverteilung mit Lokationsparameter [mm] $\mu_2=3$: [/mm]

Hier die Daten [mm] $x_1,\hdots,x_{10}$: [/mm]

-0.55  2.65  0.71  -7.54  -1.64  31.44  -1.06  -0.02  0.06  0.08


Und dies sind die Daten [mm] $x_{11},\hdots,x_{20}$: [/mm]

9.58  3.24  5.18  1.78  -2.23  2.69  1.50  3.89  3.57  3.64


Testen Sie [mm] $H_0: \mu_1\leq \mu_2$ [/mm] gegen [mm] $H_1: \mu_1>\mu_2$ [/mm] mit Hilfe des Wilcoxon Rangsummentests zum Niveau 0,01.



Moin, meine Frage ist: Ist das so gemeint, dass es hier um eine Verschiebung der Verteilungsfunktion geht?

Ich frage mich, was man hier mit "Lokationsparameter" meint und ob ein größerer Lokationsparameter bedeutet, dass die Verteilungsfunktion nach links oder nach rechts verschoben wird.


Ich würde meinen, daß ein größerer Lokationsparameter bedeutet, daß die Verteilungsfunktion weiter nach rechts verschoben wird.

Wenn ich also die Ränge der zweiten Stichprobe aufsummiere, müssten für die Alternative dann kleinere Rangsummen sprechen.

Demnach würde ich meinen, handelt es sich hier um ein linksseitiges Testproblem und ich muss die Nullhypothese ablehnen, wenn

[mm] $W:=\sum\limits_{i=11}^{20}R_i

Ich komme auf $W=135$.

Demnach kann die Nullhypothese nicht abgelehnt werden!



Anderes Sigknifikanzniveau: 0.025:

Auch hier komme ich darauf, daß [mm] $H_0$ [/mm] nicht abgelehnt werden kann, da

[mm] $W=135>w_{0.025}=78$. [/mm]





Stimmt das so?

        
Bezug
Wilcoxon: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 17.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de