www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - additionsverfahren,gleichsetze
additionsverfahren,gleichsetze < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

additionsverfahren,gleichsetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 So 16.03.2008
Autor: HeBuScH

Aufgabe
gleichsetzungsverfahren105/4a
°3x-2y=3
°3x-y=5

dann aditionsverfahren108/ 2a
°3x+y=5
°2x-2y=6

kann mir jemand da den genauen rechenweg erklären weil bei diesen zwei aufgaben bekomme ich immer etwas falsches raus

Vielen dank schon mal im voraus

grüße lisa


ich habe diese frage in keinem forum auf anderen internetseiten gestellt.


        
Bezug
additionsverfahren,gleichsetze: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 So 16.03.2008
Autor: steppenhahn

Um Gleichungssysteme zu lösen, kann man die von dir genannten Verfahren verwenden.
Ziel des Gleichsetzungsverfahrens ist es, beide Gleichungen so umzuformen, dass bei beiden jeweils sowas dasteht:

... = 3x
... = 3x

Dann kannst du nämlich sagen, dass die beiden linken Ausdrücke gleich sein müssen. (Logisch: Wenn rechts dasselbe steht, muss auch links dasselbe stehen).
Bei deiner Aufgabe sollte es dein Ziel sein, diese 3x jeweils auf eine Seite der Gleichung zu bringen und alles andere auf die andere Seite:

3x-2y=3
3x-y = 5

Also rechnen wir bei der ersten plus 2y und bei der zweiten plus y:

3x = 3+2y
3x = 5+y

so sehen dann die Gleichungen aus.
Und nun wendest du eben obiges Verfahren an und sagst: Auf der linken Seite sind die beiden Ausdrücke immer gleich, also sind auch die rechten Ausdrücke immer gleich und es gilt:

3+2y = 5+y

Nun musst du nur noch y rausbekommen. Dazu versuchst du alle y auf eine Seite zu bekommen und alle Zahlen auf die andere Seite der Gleichung:
Ich rechne zuerst minus y auf beiden Seiten:

3+y=5

Und nun noch minus 3

y = 2.

Nun hast du dein Ergebnis für y raus und musst nur noch das Ergebnis für x rausbekommen. Dazu setzt du das nun schon bekannte y in eine deiner beiden Ausgangsgleichungen ein und bringst x, genauso wie gerade y, auf eine Seite:
Ich nehme die zweite Gleichung:

3x - y = 5

Nun noch das schon bekannte y einsetzen y = 2:

3x - 2 = 5

Das kannst du jetzt nach x umstellen und dann hast du die Aufgabe gelöst :-).

Zum Additionsverfahren:

Hier ist deine Voraussetzung, in einer Gleichung genau das negative einer Variablen wie in der anderen stehen zu haben, z.B. bei

3y + 2x = 3
4y - 2x = 3

hast du einmal 2x in einer Gleichung stehen und einmal -2x.
Dann kannst du die Gleichungen "addieren", d.h. es steht da:

7y = 6.

Denn durch das Addieren fällt das 2x bzw. -2x weg.
Zu deiner Aufgabe:
Hier haben wir nicht sofort so eine Form wie oben, sondern wir müssen sie erst erreichen.

3x+y = 5
2x - 2y = 6

Mit ein bisschen Übung erkennt man aber schnell, dass man die zweite Gleichung noch hübsch durch 2 teilen kann:

2x - 2y = 6

ist dasselbe wie

x - y = 3.

Und nun haben wir schon unsere Voraussetzung erfüllt, dass wir das Additionsverfahren anwenden können, denn in einer Gleichung steht -y und in der anderen +y:
Wir addieren (beachte, dass x = 1*x ist!):

3x+y = 5
1x - y = 3

4x = 8.

Nun kannst du wie beim Gleichsetzungsverfahren schon gezeigt noch x und y bestimmen. :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de