alternierende Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	  
	  
 | Aufgabe |   Zeigen sie am Beispiel der alternierenden Gruppe (für n=4):
 
1) Teilt d die Gruppenordnung, so muß im allgemeinen keine Untergruppe vom Index d existieren.
 
2) Ist U Normalteiler von V und V Normalteiler von G, so muss U nicht normal in G sein.  |  
  
hallo. ich finde hier leider keinen ansatz. kann mir jemand helfen???
 
vielen dank im vorraus....
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  10:39 So 28.10.2007 |    | Autor: |  mando |   
	   
	   Es gilt: Alt4 = {id, (1,2)*(3,4), (1,3)*(2,4), (1,4)*(2,3), (1,2,3), (1,3,2), (1,3,4), (1,4,3), (1,2,4), (1,4,2), (2,3,4), (2,4,3)}
 
 
Zu 1) Nimm mal an es gäbe eine Untergruppe U vom Index 2 (2 teilt ord(Alt4) = 12). Dann kannst du zeigen, dass U dann normal sein müsste. Das kannst du dann mit der Formel [mm] a\circ(i,j,k)\circ a^{-1} [/mm] = (a(i), a(j), a(k)) zum Widerspruch führen.
 
 
Zu 2) Versuch mal zu zeigen, dass V:= {id, (1,2)*(3,4), (1,3)*(2,4), (1,4)*(2,3)} normal ist in Alt4 und U:= {id, (1,2)*(3,4)} normal in V ist, aber nicht in Alt4.
 
 
Hoffe das hilft dir schon weiter, sonst frag ruhig nochmal nach:)
 
 
      | 
     
    
   | 
  
 
 |   
|                  | 
  
 
   | 
  
 
  
   
    
     
	  
	   hallo!
 
erst einmal vielen dank für deine antwort. Leider kann ich mit der Schreibweise (1,2)*(3,4) bzw. (1,2,4) für die einzelnden permutationen nichts anfangen. ich weiß nicht welche permutationen du damit meinst. ich verstehe auch die schreibweise a [mm] \circ [/mm] (i,j,k) [mm] \circ  a^{-1} [/mm] leider nicht. könntest du das vielleicht noch einmal erklären?
 
vielen dank im vorraus....
 
 
      | 
     
    
   | 
  
 
 |   
|                          | 
   
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  16:00 So 28.10.2007 |    | Autor: |  mando |   
	   
	   Das ist die Zykelschreibweise:
 
Wenn z.b. a = (i,j,k) bedeutet dass, dass a(i) = j, a(j)= k und a(k) = i ist und für alle anderen l gilt a(l) = l.
 
Das * soll [mm] \circ [/mm] sein und ist einfach die hintereinanderausführung. 
 
Und a [mm] \circ [/mm] (i,j,k)  [mm] \circ a^{-1} [/mm] bedeutet, dass zuererst [mm] a^{-1} [/mm] ausgeführt ist, dann (i,j,k) und dann a.
 
 
      | 
     
    
   | 
  
 
 |   
  
   |